LIST OF SYMBOLS

\(\mu \) = Magnetic permeability (Henry/meter).

\(\sigma \) = Electrical conductivity (mhos/meter).

\(E \) = Electric field intensity (volt/meter).

\(D \) = Dielectric displacement.

\(H \) = Magnetic field intensity (Ampere - turn/meter).

\(B \) = Flux density (or magnetic induction) (weber/sq.meter).

\(I \) = Electric current (ampere).

\(J \) = Electric current density (Ampere/sq.meter).

\(\sigma_l \) = Conductivity value in the longitudinal direction (in chapters, 2, 3, 4 and 5) in anisotropic medium.

\(\sigma_{l1} \) = Conductivity value in the longitudinal direction in anisotropic medium (in chapters 6 and 7.B).

\(\sigma_{l2} \) = Conductivity value in the longitudinal direction in anisotropic medium (in chapter 7.C).

\(\sigma_t \) = Conductivity value in transverse direction in anisotropic medium (in chapters 2, 3, 4 and 5).

\(\sigma_{t1} \) = Conductivity value in the transverse direction in anisotropic medium (in chapters 6 and 7.B).

\(\sigma_{t2} \) = Conductivity value in the transverse direction in anisotropic medium (in chapter 7.C).

\(W \) = Frequency of the electro-magnetic waves.

\(r_0 \) = Propagation constant in air.

\(r_l \) = Propagation constant in anisotropic medium (in chapters 2, 3, 4 and 5).

\(r_{l1} \) = Propagation constant in anisotropic medium (in chapters 6 and 7.B).

\(r_2 \) = Propagation constant in lower half-space (in chapters 3, 4 and 6).
\(r'_{2}(z) \) = Propagation constant in transition layer (in chapter 7).

\(r_3 \) = Propagation constant in isotropic lower half-space (in chapter 7,5).

\(u_0 \) = Wave number in air.

\(u_2 \) = Wave number in lower isotropic half-space (in chapters 3, 4 and 6).

\(s \) = Wave number in anisotropic medium.

\(\beta \) = (a) Position of the observer (in chapter 2).

(b) Modulus of the modified Bessel function (in chapter 7).

\(\beta_1 \) = Modulus of modified Bessel function of first kind at \(z = h_1 \) (in chapter 7).

\(\beta_2 \) = Modulus of the modified Bessel function of first kind at \(z = h_2 \) (in chapter 7).

\(\beta_1 \) = Modulus of the modified Bessel function of second kind (in chapter 2).

\(\alpha_0 \) = (a) Radial distance (in chapter 2).

(b) Numerical distance (in chapters 3 and 5).

(c) Angle of inclination (in chapters 6 and 7).

\(\alpha_1 \) = Modulus of the modified Bessel function of second kind (in chapter 2).

\(m \) = Coefficient of anisotropy.

\(\varepsilon \) = Electrical permittivity (in chapter 1).

\(\sum_1 \) = Ratio of the conductivities of the lower half-space to the longitudinal conductivity of the upper anisotropic layer (in chapters 3 and 4).

\(b \) = (a) Ratio of the conductivities of the lower half-space to the longitudinal conductivity of upper anisotropic layer (in chapter 6).
= (b) Ratio of the conductivities of the lower half-space to the longitudinal conductivity of the upper most anisotropic layer (in chapter 7.B).

= (c) Ratio of the conductivities of the lower anisotropic layer to the upper isotropic layer (in chapter 7.C).

h = (d) Position of the dipole in the upper anisotropic conducting layer (in chapters 3 and 4.B).

= (b) Normalized position of the dipole in the lower half-space (in chapter 4.C).

= (c) Height of the source dipole above anisotropic half-space (in chapter 5).

= (d) Normalized thickness of the transition layer \(h_2 - h_1/h_1 \) (in chapter 7).

\(h' \) = Normalized depth of the buried dipole (in chapter 3).

\(h_1 \) = Thickness of the upper anisotropic layer (in chapter 4.C).

\(h_2 \) = Depth of the source dipole (in chapter 4.C).

H = Normalized depth of the buried dipole (in chapter 4.B).

D = Normalized position of the receiver on the earth's surface (in chapter 4.B).

\(d \) = Thickness of the upper anisotropic layer.

\(\text{ber}, \text{bei} \), \(\text{ker}, \text{ksi} \) = Kelvin's function.

\(J_0, J_1 \) = Bessel functions of first kind of order zero and one.

\(I_0, I_1 \) = Modified Bessel function of first kind of order zero and one.
K_0, K_1 = Modified Bessel function of second kind of order zero and one.

h_1/δ_1 = Normalized skin-depth (in chapter 7).

d/δ_1 = Normalized skin-depth (in chapter 6).

δ = Skin-depth (in chapters 6 and 7).

ρ_a = Apparent resistivity.

ρ_L = Resistivity value in the longitudinal direction (in chapters 6 and 7.B).

ρ_1 = Resistivity value in the upper layer (in chapter 7.C).

(ρ, ϕ, z) = Cylindrical coordinates.

Z = surface impedance (in chapters 5, 6 and 7).

$(\theta - \phi)$ = Phase-difference.

L_1 = Sommerfeld's integral.

P_1 = Foster's Integral.