APPENDICES

APPENDIX-A

STANDARD RECIPES FOLLOWED FOR THE PREPARATION OF PRODUCTS.

a) BALU SHAHI

Ingredients:

Whole Wheat Flour - 250g.
Ghee - 50g.
Baking Powder - ¼ tbsp

For Sugar Syrup:

Sugar - 250g.
Water - 250 ml

Method:

- Sieve the flour and add the ghee and baking powder, mix well. Gradually add warm water to make a soft dough.
- Divide dough into small balls, flatten and make thumb impressions in the centre.
- Prepare a thick syrup from the sugar.
- Heat ghee in a deep frying pan and put in the balushahis. Remove the pan from heat till the ghee stops simmering. Replace pan on heat and bring ghee again to smoking point. Repeat the process till the balushahis are well risen and layers appear.
- When all the dough is used, place balushahis on a perforated vessel and pour thick, hot sugar syrup over them.
- Shake the vessel so that when the syrup is cold it should leave an even coating.

Source:

http://www.indianfoodforever.com/holidayrecipes/karwachauth/balushahi.html
VARIATIONS: Balu Shahi was prepared by incorporating of Carrot Flour in different ratios. Carrot Flour (10%) was incorporated in Whole Wheat Flour (90 %) treatment T_1. Carrot Flour (20%) was incorporated in Whole Wheat Flour (80 %) treatment T_2. Carrot Flour (30%) was incorporated in Whole Wheat Flour (70 %) treatment T_3. Carrot Flour (40%) was incorporated in Whole Wheat Flour (60 %) treatment T_4 during preparation of the product.

b) **COOKIES**

Ingredients:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Wheat Flour</td>
<td>50g.</td>
</tr>
<tr>
<td>Butter</td>
<td>34g.</td>
</tr>
<tr>
<td>Sugar</td>
<td>34g</td>
</tr>
<tr>
<td>Baking Powder</td>
<td>1 Pinch</td>
</tr>
<tr>
<td>Milk Powder</td>
<td>1 tbsp</td>
</tr>
</tbody>
</table>

Method:

- Mix sugar and butter make a fine paste.
- Then add milk powder, baking powder and mix well.
- Then add Whole wheat flour in paste and mix well.
- Mix till it become soft dough.
- Roll in to small balls and put on a greased baking tray.
- Preheated oven for 15 minute and bake till golden brown or till done.

VARIATIONS: Carrot Cookies was prepared by incorporating Carrot Flour in different ratios. Carrot Flour (10%) was incorporated in Whole Wheat Flour (90 %) treatment T_1. Carrot Flour (20%) was incorporated in Whole Wheat Flour (80 %) treatment T_2. Carrot Flour (30%) was incorporated in Whole Wheat Flour (70 %) treatment T_3. Carrot Flour (40%) was incorporated in Whole Wheat Flour (60 %) treatment T_4 during preparation of the product.
c) **LADOO**

Ingredients:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Flour</td>
<td>50g.</td>
</tr>
<tr>
<td>Sugar</td>
<td>20g.</td>
</tr>
<tr>
<td>Khoa</td>
<td>15g.</td>
</tr>
<tr>
<td>Ghee</td>
<td>15 g.</td>
</tr>
<tr>
<td>Milk Powder</td>
<td>1 tbsp</td>
</tr>
</tbody>
</table>

Method:

- Mix Sugar and ghee make a fine paste.
- Then add milk Powder.
- Roast the flour and khoa till it become light brown.
- Mix flour and khoa in paste.
- Then make Ladoo.

Source: http://dreampassion.hubpages.com/hub/howtomakehealthyladooathome

VARIATIONS: *Carrot Flour / Lotus Stem Flour / Flax Seed Flour / Multi Flour (Flax Seed Flour, Lotus Stem Flour and Flax Seed Flour) Ladoo was prepared by incorporating in different ratios. Carrot Flour / Lotus Stem Flour / Flax Seed Flour / Multi Flour (Flax Seed Flour, Lotus Stem Flour and Flax Seed Flour) (10%) was incorporated in Whole Wheat Flour (90 %) treatment T₁. Carrot Flour / Lotus Stem Flour / Flax Seed Flour / Multi Flour (Flax Seed Flour, Lotus Stem Flour and Flax Seed Flour) (20%) was incorporated in Whole Wheat Flour (80 %) treatment T₂. Carrot Flour / Lotus Stem Flour / Flax Seed / Multi Flour (Flax Seed Flour, Lotus Stem Flour and Flax Seed Flour) (30%) was incorporated in Whole Wheat Flour (70 %) treatment T₃. Carrot Flour / Lotus Stem Flour / Flax Seed Flour/ Multi Flour (Flax Seed Flour, Lotus Stem Flour and Flax Seed Flour) (40%) was incorporated in Whole Wheat Flour (60 %) treatment T₄ during preparation of the product.*
d) **KHURMA**

Ingredients:

- Refined Wheat Flour - 100g.
- Refined Oil - 30 g.

For Sugar Syrup:

- Sugar - 250g.
- Water - 250 ml

Method:

- Make a stiff dough of the flours,
- Roll 1½ inch thick. Cut squares.
- Deep fry till golden. Drain.
- In a saucepan boil sugar and water till you have a thick two-strand chasni. Keep it warm on the stove.
- Dip in the squares in the chasni and drain quickly.

Source: http://www.surfindia.com/recipes/khurma.html

VARIATIONS: *Flax Seed Flour / Multi Flour (Carrot, Lotus Stem and Flax Seed Flour)* Khurma was prepared by incorporating in different ratios. *Flax Seed Flour / Multi Flour (Carrot, Lotus Stem and Flax Seed Flour)* (10%) was incorporated in Whole Wheat Flour (90 %). *Flax Seed Flour / Multi Flour (Carrot, Lotus Stem and Flax Seed Flour)* (20%) was incorporated in Whole Wheat Flour (80 %). *Flax Seed Flour / Multi Flour (Carrot, Lotus Stem and Flax Seed Flour)* (30%) was incorporated in Whole Wheat Flour (70 %). *Flax Seed Flour / Multi Flour (Carrot, Lotus Stem and Flax Seed Flour)* (40%) was incorporated in Whole Wheat Flour (60 %) treatment T₄ during preparation of the product.
e) **SWEET POORI**

Ingredients:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Flour</td>
<td>100g.</td>
</tr>
<tr>
<td>Sugar</td>
<td>40g.</td>
</tr>
<tr>
<td>Ghee</td>
<td>50g.</td>
</tr>
<tr>
<td>Refined oil</td>
<td>20 g.</td>
</tr>
</tbody>
</table>

Method:

- In a bowl mix refined wheat flour and ghee, mix well.
- Dissolve sugar in water as needed to make a soft dough keep it for 15 min.
- Roll into small balls now make a poori.
- Now add oil to deep fry on slow flame till golden brown.

Source: http://www.vahrehvah.com/indianfood/sweet-poori/

VARIATIONS: *Flax Seed Flour/ Lotus Stem Flour Poori* was prepared by incorporating in different ratios. *Flax Seed Flour / Lotus Stem Flour* (10%) was incorporated in Whole Wheat Flour (90 %) treatment T₁. *Flax Seed Flour/ Lotus Stem Flour* (20%) was incorporated in Whole Wheat Flour (80 %) treatment T₂. *Flax Seed Flour/ Lotus Stem Flour* (30%) was incorporated in Whole Wheat Flour (70 %) treatment T₃. *Flax Seed Flour/ Lotus Stem Flour* (40%) was incorporated in Whole Wheat Flour (60 %) treatment T₄ during preparation of the product.
f) MEETHTI KACHAURI

Ingredients:

- Whole Wheat Flour - 100g.
- Sugar Powder - 40g.
- Ghee - 20g.
- Refined oil - 40g.
- Cooped Coconut - 15g.
- Raisins - 10g.
- Piyal Seeds - 10g.

Method:

- Mix Chopped Dry Fruits, Sugar Powder and Ghee in a bowl.
- Knead the soft dough.
- Roll out dough into flat disc, put the filling in the centre and seal the roll.
- Now fry the Kachauri over the flame in hot oil, when they turn golden brown.

VARIATIONS: Multi Flour (Flax Seed Flour, Lotus Stem Flour and Flax Seed Flour) was prepared by incorporating Multi Flour in different ratios. Multi Flour (10%) was incorporated in Whole Wheat Flour (90 %) treatment T₁. Multi Flour (20%) was incorporated in Whole Wheat Flour (80 %) treatment T₂. Multi Flour (30%) was incorporated in Whole Wheat Flour (70 %) treatment T₃. Multi Flour (40%) was incorporated in Whole Wheat Flour (60 %) treatment T₄ during preparation of the product.
g) **NOODLES**

For Making Noodles:

Ingredients:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Wheat Flour</td>
<td>100g.</td>
</tr>
<tr>
<td>Water</td>
<td>as required</td>
</tr>
</tbody>
</table>

For Fry Noodles:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabbage</td>
<td>15g</td>
</tr>
<tr>
<td>Onion</td>
<td>10g.</td>
</tr>
<tr>
<td>Capsicum</td>
<td>10g.</td>
</tr>
<tr>
<td>French Beans</td>
<td>10g.</td>
</tr>
<tr>
<td>Black Pepper Powder</td>
<td>1/2 tsp</td>
</tr>
<tr>
<td>Soya Sauce</td>
<td>1 tsp</td>
</tr>
<tr>
<td>White Vinegar</td>
<td>1 tsp</td>
</tr>
<tr>
<td>Refined Oil</td>
<td>30g.</td>
</tr>
<tr>
<td>Salt</td>
<td>to taste</td>
</tr>
</tbody>
</table>

Method:

- Kneed the soft dough with the help of water.
- Dough are set in the Noodles machine and Noodles are dry in the shadow.
- Noodles are prepared for frying.
- Boil noodles with a pinch of salt and 1 tsp oil. Strain when cooked and keep aside. Add cooking oil in a broad pan hot it. Add onion and fry till onion turns transparent.
- Add the cooked noodles and fry stirring in high flame for approximately 2 mins.
- Then add Cabbage, Capsicum, French bean, Salt to taste and fry it.
- Reduce the flame add Soya sauce and white vinegar. Stir well and check the level of salt. Finally add black pepper powder and stir well.
- Serve hot.
Source: http://www.pachakam.com/recipe.asp?id=3294&RecipeName=Fried%20Noodles/Pasta/Spaghetti

VARIATIONS: *Lotus Stem Noodles* was prepared by incorporating of *Lotus Stem Flour* in different ratios. *Lotus Stem Flour* (10%) was incorporated in Wheat Wheat Flour (90 %) treatment T₁. *Lotus Stem Flour* (20%) was incorporated in Wheat Wheat Flour (80 %) treatment T₂. *Lotus Stem Flour* (30%) was incorporated in Whole Wheat Flour (70 %) treatment T₃. *Lotus Stem Flour* (40%) was incorporated in Whole Wheat Flour (60 %) treatment T₄ during preparation of the product.
APPENDIX-B

Cost of raw ingredients which is used for making products:

I. Carrot Balu Shahi

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Carrot</td>
<td>25</td>
</tr>
<tr>
<td>Refined</td>
<td>90</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
<tr>
<td>Baking</td>
<td>250</td>
</tr>
</tbody>
</table>

II. Carrot Cookies

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Carrot</td>
<td>25</td>
</tr>
<tr>
<td>Butter</td>
<td>310</td>
</tr>
<tr>
<td>Milk Powder</td>
<td>300</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
<tr>
<td>Baking</td>
<td>250</td>
</tr>
</tbody>
</table>

III. Carrot Ladoo

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Carrot</td>
<td>25</td>
</tr>
<tr>
<td>Khoa</td>
<td>260</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>
IV. Lotus Stem Ladoo

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Lotus Stem</td>
<td>600</td>
</tr>
<tr>
<td>Khoa</td>
<td>260</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>

V. Lotus Stem Puri

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Lotus Stem</td>
<td>600</td>
</tr>
<tr>
<td>Refine</td>
<td>90</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>

VI. Lotus Stem Noodles

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Lotus Stem</td>
<td>600</td>
</tr>
<tr>
<td>Refine</td>
<td>90</td>
</tr>
<tr>
<td>Onion</td>
<td>16</td>
</tr>
<tr>
<td>Cabbage</td>
<td>15</td>
</tr>
<tr>
<td>Capsicum</td>
<td>60</td>
</tr>
<tr>
<td>Beans</td>
<td>40</td>
</tr>
<tr>
<td>Salt</td>
<td>16</td>
</tr>
<tr>
<td>Black Pepper</td>
<td>250</td>
</tr>
<tr>
<td>White Vinegar</td>
<td>250</td>
</tr>
<tr>
<td>Soya Sauce</td>
<td>250</td>
</tr>
</tbody>
</table>
VII. Flax Seed Ladoo

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Flax Seed</td>
<td>80</td>
</tr>
<tr>
<td>Khoa</td>
<td>260</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>

VIII. Flax Seed Puri

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Flax Seed</td>
<td>80</td>
</tr>
<tr>
<td>Refine</td>
<td>90</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>

IX. Flax Seed Khurma

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Flax Seed</td>
<td>80</td>
</tr>
<tr>
<td>Refine</td>
<td>90</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>
X. Multi Flour Ladoo

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Flax Seed</td>
<td>80</td>
</tr>
<tr>
<td>Carrot</td>
<td>25</td>
</tr>
<tr>
<td>Lotus Stem</td>
<td>600</td>
</tr>
<tr>
<td>Khoa</td>
<td>260</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>

XI. Multi Flour Khurma

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Flax Seed</td>
<td>80</td>
</tr>
<tr>
<td>Carrot</td>
<td>25</td>
</tr>
<tr>
<td>Lotus Stem</td>
<td>600</td>
</tr>
<tr>
<td>Refine</td>
<td>90</td>
</tr>
<tr>
<td>Sugar</td>
<td>40</td>
</tr>
</tbody>
</table>

XII. Multi Flour Meethi Kachuri

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Rate / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat flour</td>
<td>24</td>
</tr>
<tr>
<td>Lotus Stem</td>
<td>600</td>
</tr>
<tr>
<td>Flax Seed</td>
<td>80</td>
</tr>
<tr>
<td>Carrot</td>
<td>25</td>
</tr>
<tr>
<td>Refine</td>
<td>90</td>
</tr>
<tr>
<td>Ghee</td>
<td>360</td>
</tr>
<tr>
<td>Dry Coconut</td>
<td>120</td>
</tr>
<tr>
<td>Raisins</td>
<td>180</td>
</tr>
<tr>
<td>Piyal Seed</td>
<td>1000</td>
</tr>
</tbody>
</table>
Score Card For Sensory Evaluation

Kindly evaluate the given product on the basis of the following scores.

- Like extremely: 9
- Like very much: 8
- Like moderately: 7
- Like slightly: 6
- Neither like nor dislike: 5
- Dislike slightly: 4
- Dislike moderately: 3
- Dislike very much: 2
- Dislike extremely: 1

<table>
<thead>
<tr>
<th>Product</th>
<th>Colour & Appearance</th>
<th>Body & Texture</th>
<th>Flavour & Taste</th>
<th>Overall acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: Name:

Signature:
APPENDIX-D

Formulae Used For Statistical Analysis

I. Analysis of variance

\[G = T_1 + T_2 + T_3 + \ldots + T_n \]

1. Correction factor (C.F.) = \(\frac{G^2}{rt} \)

2. Treatment S.S. = \(\frac{T_1^2 + T_2^2 + T_3^2 + \ldots + T_n^2}{r} \) - CF

3. Replication = \(\frac{-R_1^2 + R_2^2 + R_3^2 + \ldots + R_n^2}{t} \) - CF

4. Total S.S. = \(\sum X_{ij} R_r^2 - C.F \)

5. Error S.S. = Total S.S. – S.S. due to treatment – S.S. due to replication

Where, \(G \) = Grand total
\(t \) = treatment
\(r \) = replication
S.S. = Sum of square

II. C.D. test

\[S.E. (\text{Mean}) = \sqrt{\frac{2 \times \text{EMSS}}{r}} \]

\[\text{C.D.} = S.E. (\text{mean}) \times t (5\%) \]

Where, S.E. = Standard error
EMSS = Error mean of sums of squares
R = replication

III. S.E. = \(\frac{\sigma x}{n} \)

Where, \(\sigma x \) = standard deviation
\(n = \) number of observations

IV. **SKELETON FOR ANOVA TABLE FOR ORGANOLEPTIC CHARACTERISTICS OF PRODUCTS.**

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F. cal.</th>
<th>F. tab. (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatments</td>
<td>t-1</td>
<td>T.S.S.</td>
<td>(\frac{T.S.S}{t-1} = \frac{T.M.S.S}{T.M.S.S})</td>
<td>T.M.S.S</td>
<td>E.M.S.S = F</td>
<td></td>
</tr>
<tr>
<td>Due to replication</td>
<td>r-1</td>
<td>R.S.S.</td>
<td>(\frac{R.S.S}{r-1} = \frac{R.M.S.S}{E.M.S.S})</td>
<td>R.M.S.S</td>
<td>E.M.S.S = F</td>
<td></td>
</tr>
<tr>
<td>Due to error</td>
<td>(r-1) (t-1)</td>
<td>E.S.S.</td>
<td>(\frac{E.S.S}{(r-1) (t-1)} = \frac{E.M.S.S}{E.M.S.S})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>rt-1</td>
<td>T.S.S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX-E

Table E (1). Analysis of variance data for Colour of *Carrot Balu Shahi*.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>24.696</td>
<td>6.174</td>
<td>47.129</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.904</td>
<td>0.726</td>
<td>5.541</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.096</td>
<td>0.131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>29.696</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (2). Comparison between treatment for Colour of *Carrot Balu Shahi* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
<th>T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.6*</td>
<td>2.28*</td>
<td>1.36*</td>
<td>0.56*</td>
</tr>
<tr>
<td>T0</td>
<td>2.08*</td>
<td>1.76*</td>
<td>0.84*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.24*</td>
<td>0.92*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (3). Analysis of variance data for Texture of *Carrot Balu Shahi*.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>24.912</td>
<td>6.228</td>
<td>38.92</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.648</td>
<td>0.412</td>
<td>2.575</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.56</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>29.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (4). Comparison between treatment for Texture of *Carrot Balu Shahi* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
<th>T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.56*</td>
<td>2.12*</td>
<td>1.16*</td>
<td>0.28*</td>
</tr>
<tr>
<td>T0</td>
<td>2.28*</td>
<td>1.84*</td>
<td>0.88*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.4*</td>
<td>0.96*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.44*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (5). Analysis of variance data for Flavour of *Carrot Balu Shahi*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>18.359</td>
<td>4.589</td>
<td>29.416</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.119</td>
<td>0.529</td>
<td>3.391</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.505</td>
<td>0.156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>22.983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (6). Comparison between treatment for Flavour of *Carrot Balu Shahi* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
<th>T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.24*</td>
<td>1.88*</td>
<td>0.84*</td>
<td>0.4</td>
</tr>
<tr>
<td>T0</td>
<td>1.84*</td>
<td>1.48*</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.4*</td>
<td>1.04*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (7). Analysis of variance data for Overall acceptability of *Carrot Balu Shahi*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>23.93</td>
<td>5.93</td>
<td>98.83</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.52</td>
<td>0.38</td>
<td>6.33</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.96</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>26.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (8). Comparison between treatment for Overall acceptability of *Carrot Balu Shahi* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
<th>T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.54*</td>
<td>2.11*</td>
<td>1.1*</td>
<td>0.39*</td>
</tr>
<tr>
<td>T0</td>
<td>2.15*</td>
<td>1.72*</td>
<td>0.71*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.44*</td>
<td>1.01*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.43*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (9). Analysis of variance data for Colour of *Carrot Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>8.976</td>
<td>2.244</td>
<td>15.26</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.064</td>
<td>0.016</td>
<td>0.108</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.36</td>
<td>0.147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (10). Comparison between treatment for Colour of *Carrot Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.84*</td>
<td>1.08*</td>
<td>1.26*</td>
<td>0.88*</td>
</tr>
<tr>
<td>T4</td>
<td>0.96*</td>
<td>0.2</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.58*</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.76*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (11). Analysis of variance data for Texture of *Carrot Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>13.335</td>
<td>3.33</td>
<td>4.487</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.759</td>
<td>0.189</td>
<td>0.254</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.969</td>
<td>0.742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>17.063</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (12). Comparison between treatment for Texture of *Carrot Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T1</th>
<th>T0</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.96*</td>
<td>1.92*</td>
<td>1.24*</td>
<td>0.84*</td>
</tr>
<tr>
<td>T4</td>
<td>1.12*</td>
<td>1.08*</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.96*</td>
<td>1.92*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (13). Analysis of variance data for Flavour of *Carrot Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>18.728</td>
<td>4.682</td>
<td>44.590</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.146</td>
<td>0.286</td>
<td>2.72</td>
<td>3.01</td>
<td>NS</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.686</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>18.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (14). Comparison between treatment for Flavour of *Carrot Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>2.32*</td>
<td>1.8*</td>
<td>1.44*</td>
<td>0.8*</td>
</tr>
<tr>
<td>T4</td>
<td>1.56*</td>
<td>1*</td>
<td>0.64*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.88*</td>
<td>0.36*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (15). Analysis of variance data for Overall acceptability of *Carrot Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>12.84</td>
<td>3.21</td>
<td>69.78</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.57</td>
<td>0.142</td>
<td>3.08</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.74</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>14.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (16). Comparison between treatment for Overall acceptability of *Carrot Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>2.05*</td>
<td>1.7*</td>
<td>1.34*</td>
<td>0.85*</td>
</tr>
<tr>
<td>T4</td>
<td>1.2*</td>
<td>0.85*</td>
<td>0.49*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.71*</td>
<td>0.36*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.35*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (17). Analysis of variance data for Colour of *Carrot Cookies*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>12.4</td>
<td>3.1</td>
<td>41.33</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.72</td>
<td>0.53</td>
<td>7.06</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>7.2</td>
<td>0.075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>16.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (18). Table Comparison between treatment for Colour of *Carrot Cookies* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T3</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>2.04*</td>
<td>1.68*</td>
<td>0.94*</td>
<td>0.92*</td>
</tr>
<tr>
<td>T1</td>
<td>1.12*</td>
<td>0.76*</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>1.08*</td>
<td>0.72*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (19). Analysis of variance data for Texture of *Carrot Cookies*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>11.59</td>
<td>2.89</td>
<td>34.81</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.27</td>
<td>0.317</td>
<td>3.81</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.33</td>
<td>0.083</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>14.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (20). Comparison between treatment for Texture of *Carrot Cookies* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T3</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>1.92*</td>
<td>1.72*</td>
<td>0.96*</td>
<td>0.92*</td>
</tr>
<tr>
<td>T1</td>
<td>1*</td>
<td>0.8*</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.96*</td>
<td>0.76*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (21). Analysis of variance data for Flavour of *Carrot Cookies*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>11.29</td>
<td>2.82</td>
<td>38.10</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.61</td>
<td>0.40</td>
<td>5.40</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.19</td>
<td>0.074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>14.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (22). Comparison between treatment for Flavour of Carrot Cookies against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>1.8*</td>
<td>1.8*</td>
<td>1.12*</td>
<td>0.84*</td>
</tr>
<tr>
<td>T3</td>
<td>0.96*</td>
<td>0.96*</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.68*</td>
<td>0.68*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (23). Analysis of variance data for Overall acceptability of Carrot Cookies.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>11.77</td>
<td>2.94</td>
<td>147</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.56</td>
<td>0.39</td>
<td>19.5</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.36</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>13.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (24). Comparison between treatment for Overall acceptability of Carrot Cookies against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>1.95*</td>
<td>1.75*</td>
<td>1.02*</td>
<td>0.98*</td>
</tr>
<tr>
<td>T3</td>
<td>0.97*</td>
<td>0.77</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.93*</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (25). Analysis of variance data for Colour of *Lotus Stem Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>10.28</td>
<td>2.57</td>
<td>24.47</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.25</td>
<td>0.31</td>
<td>2.95</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.105</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (26). Table Comparison between treatment for Colour of *Lotus Stem Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.81*</td>
<td>1.68*</td>
<td>1.05*</td>
<td>1.04*</td>
</tr>
<tr>
<td>T2</td>
<td>0.77*</td>
<td>0.64*</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.76*</td>
<td>0.63*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (27). Analysis of variance data for Texture of *Lotus Stem Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>10.26</td>
<td>2.565</td>
<td>25.65</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.33</td>
<td>0.33</td>
<td>3.3</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.6</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>13.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (28). Table Comparison between treatment for Texture of *Lotus Stem Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.81*</td>
<td>1.68*</td>
<td>1.2*</td>
<td>1.05*</td>
</tr>
<tr>
<td>T4</td>
<td>0.76*</td>
<td>0.63*</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.61*</td>
<td>0.48*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (29). Analysis of variance data for Flavour of *Lotus Stem Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>14.04</td>
<td>3.51</td>
<td>31.90</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.364</td>
<td>0.091</td>
<td>0.827</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.781</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>16.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (30). Table Comparison between treatment for Flavour of *Lotus Stem Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>2.26*</td>
<td>1.68*</td>
<td>1.4*</td>
<td>1.37*</td>
</tr>
<tr>
<td>T2</td>
<td>0.89*</td>
<td>0.31</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.86*</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.58*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (31). Analysis of variance data for Overall acceptability of *Lotus Stem Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>7.20</td>
<td>1.8</td>
<td>12</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.87</td>
<td>0.21</td>
<td>1.4</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.48</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>10.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (32). Comparison between treatment for Overall acceptability of *Lotus Stem Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.59*</td>
<td>1.27*</td>
<td>0.85*</td>
<td>0.83*</td>
</tr>
<tr>
<td>T2</td>
<td>0.76*</td>
<td>0.44</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.74*</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (33). Analysis of variance data for Colour of *Lotus Stem Sweet Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>5.55</td>
<td>1.387</td>
<td>138.75</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.01</td>
<td>0.0025</td>
<td>0.25</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.17</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0.238</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (34). Comparison between treatment for Colour of *Lotus Stem Sweet Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>0.82*</td>
<td>0.58*</td>
<td>0.38*</td>
<td>0.06</td>
</tr>
<tr>
<td>T2</td>
<td>0.76*</td>
<td>0.52*</td>
<td>0.32*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.44*</td>
<td>0.2*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.24*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (35). Analysis of variance data for Texture of *Lotus Stem Sweet Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>4.67</td>
<td>1.16</td>
<td>105.45</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.162</td>
<td>0.04</td>
<td>3.63</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.178</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>5.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (36). Comparison between treatment for Texture of *Lotus Stem Sweet Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T2</th>
<th>T4</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.28*</td>
<td>0.56*</td>
<td>0.44*</td>
<td>0.24*</td>
</tr>
<tr>
<td>T1</td>
<td>1.04*</td>
<td>0.32*</td>
<td>0.2*</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.84*</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.72*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (37). Analysis of variance data for Flavour of *Lotus Stem Sweet Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>6.48</td>
<td>1.62</td>
<td>90</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.142</td>
<td>0.035</td>
<td>1.94</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.288</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0.287</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (38). Comparison between treatment for Flavour of *Lotus Stem Sweet Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.34*</td>
<td>1.32*</td>
<td>1.2*</td>
<td>0.72*</td>
</tr>
<tr>
<td>T2</td>
<td>0.62*</td>
<td>0.6*</td>
<td>0.48*</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.14*</td>
<td>0.12*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.02*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (39). Analysis of variance data for Overall acceptability of *Lotus Stem Sweet Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>6.506</td>
<td>1.62</td>
<td>62.30</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.122</td>
<td>0.03</td>
<td>1.75</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.422</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>7.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (40). Comparison between treatment for Overall acceptability of *Lotus Stem Sweet Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.34*</td>
<td>1.32*</td>
<td>0.56*</td>
<td>0.52*</td>
</tr>
<tr>
<td>T2</td>
<td>0.82*</td>
<td>0.8*</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.78*</td>
<td>0.76*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (41). Analysis of variance data for Colour of *Lotus Stem Noodles*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>11.38</td>
<td>2.845</td>
<td>56.9</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.468</td>
<td>0.117</td>
<td>2.34</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.812</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>12.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (42) Comparison between treatment for Colour of *Lotus Stem Noodles* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.83*</td>
<td>1.71*</td>
<td>1.12*</td>
<td>0.7*</td>
</tr>
<tr>
<td>T3</td>
<td>1.13*</td>
<td>1.01*</td>
<td>0.42*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.71*</td>
<td>0.59*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.12*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (43). Analysis of variance data for Texture of *Lotus Stem Noodles*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>11.18</td>
<td>2.79</td>
<td>31.05</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.502</td>
<td>0.375</td>
<td>4.17</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.49</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>14.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (44) Comparison between treatment for Texture of *Lotus Stem Noodles* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.92*</td>
<td>1.62*</td>
<td>1.08*</td>
<td>0.81*</td>
</tr>
<tr>
<td>T3</td>
<td>1.11*</td>
<td>0.81*</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.84*</td>
<td>0.54*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (45). Analysis of variance data for Flavour of *Lotus Stem Noodles*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>14.166</td>
<td>3.541</td>
<td>58.04</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.23</td>
<td>0.057</td>
<td>0.933</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.986</td>
<td>0.061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>15.382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (46) Comparison between treatment for Flavour of *Lotus Stem Noodles* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>2.18*</td>
<td>1.7*</td>
<td>1.3*</td>
<td>0.79*</td>
</tr>
<tr>
<td>T3</td>
<td>1.39*</td>
<td>0.91*</td>
<td>0.51*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.88*</td>
<td>0.4*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.48*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (47) Analysis of variance data for Overall acceptability of *Lotus Stem Noodles*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>11.74</td>
<td>2.935</td>
<td>225.76</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.809</td>
<td>0.202</td>
<td>15.44</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.222</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>12.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (48) Comparison between treatment for Overall acceptability of *Lotus Stem Noodles* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.95*</td>
<td>1.62*</td>
<td>1.16*</td>
<td>0.66*</td>
</tr>
<tr>
<td>T3</td>
<td>1.29*</td>
<td>0.96*</td>
<td>0.5*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.79*</td>
<td>0.46*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.33*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (49). Analysis of variance data for Colour of *Flax Seed Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>10.28</td>
<td>2.57</td>
<td>24.47</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.25</td>
<td>0.31</td>
<td>2.95</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.105</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (50) Comparison between treatment for Colour of *Flax Seed Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.81*</td>
<td>1.17*</td>
<td>1.05*</td>
<td>0.09</td>
</tr>
<tr>
<td>T2</td>
<td>1.72*</td>
<td>1.08*</td>
<td>0.96*</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.76*</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.64*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (51). Analysis of variance data for Texture of *Flax Seed Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>10.26</td>
<td>2.565</td>
<td>25.65</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.33</td>
<td>0.33</td>
<td>3.3</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.6</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>13.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (52) Comparison between treatment for Texture of *Flax Seed Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.81*</td>
<td>1.2*</td>
<td>1.11*</td>
<td>0.28*</td>
</tr>
<tr>
<td>T2</td>
<td>1.53*</td>
<td>0.92*</td>
<td>0.83*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.7*</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.61*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (53). Analysis of variance data for Flavour of *Flax Seed Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>14.04</td>
<td>3.51</td>
<td>31.90</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.364</td>
<td>0.091</td>
<td>0.827</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.781</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>16.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E(54) Comparison between treatment for Flavour of *Flax Seed Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>2.06*</td>
<td>1.82*</td>
<td>1.5*</td>
<td>0.6*</td>
</tr>
<tr>
<td>T2</td>
<td>1.46*</td>
<td>1.22*</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.56</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (55). Analysis of variance data for Overall acceptability of *Flax Seed Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>7.20</td>
<td>1.8</td>
<td>12</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.87</td>
<td>0.21</td>
<td>1.4</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.48</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>10.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E(56) Comparison between treatment for Overall acceptability of *Flax Seed Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.74*</td>
<td>1.27*</td>
<td>1.14*</td>
<td>0.33*</td>
</tr>
<tr>
<td>T2</td>
<td>1.41*</td>
<td>0.94*</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.6</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (57). Analysis of variance data for Colour of *Flax Seed Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>5.37</td>
<td>1.3425</td>
<td>16.78</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.394</td>
<td>0.0985</td>
<td>1.231</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.286</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>7.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (58) Comparison between treatment for Colour of *Flax Seed Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T4</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.44*</td>
<td>0.56*</td>
<td>0.54*</td>
<td>0.52*</td>
</tr>
<tr>
<td>T2</td>
<td>0.92*</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.9*</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.88*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (59). Analysis of variance data for Texture of *Flax Seed Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>9.162</td>
<td>2.290</td>
<td>22.9</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.774</td>
<td>0.693</td>
<td>6.93</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.606</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>13.542</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (60) Comparison between treatment for Texture of *Flax Seed Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.76*</td>
<td>1.32*</td>
<td>1.12*</td>
<td>0.62</td>
</tr>
<tr>
<td>T4</td>
<td>1.14*</td>
<td>0.7</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.64</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (61). Analysis of variance data for Flavour of *Flax Seed Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>16.17</td>
<td>4.042</td>
<td>48.11</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.346</td>
<td>0.336</td>
<td>4</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.346</td>
<td>0.084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>19.914</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (62) Comparison between treatment for Flavour of *Flax Seed Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>2.14*</td>
<td>2.12*</td>
<td>1.68*</td>
<td>1.04*</td>
</tr>
<tr>
<td>T4</td>
<td>1.1*</td>
<td>1.08*</td>
<td>0.64*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.46*</td>
<td>0.44*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (63). Analysis of variance data for Overall acceptability of *Flax Seed Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>9.25</td>
<td>2.3125</td>
<td>3.211</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.967</td>
<td>0.24175</td>
<td>0.335</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>11.525</td>
<td>0.720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>21.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (64) Comparison between treatment for Overall acceptability of *Flax Seed Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1.8*</td>
<td>1.36*</td>
<td>1.13*</td>
<td>0.76</td>
</tr>
<tr>
<td>T4</td>
<td>1.04*</td>
<td>0.6</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.67</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (65). Analysis of variance data for Colour of *Flax Seed Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>2.462</td>
<td>0.615</td>
<td>76.87</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.29</td>
<td>0.322</td>
<td>40.25</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.138</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>3.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (66) Comparison between treatment for Colour of *Flax Seed Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>0.84*</td>
<td>0.72*</td>
<td>0.48*</td>
<td>0.2*</td>
</tr>
<tr>
<td>T3</td>
<td>0.64*</td>
<td>0.52*</td>
<td>0.28*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.36*</td>
<td>0.24*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.12*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (67). Analysis of variance data for Texture of *Flax Seed Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>7.052</td>
<td>1.763</td>
<td>14.45</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>7.844</td>
<td>1.961</td>
<td>16.07</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.964</td>
<td>0.122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>16.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (68) Comparison between treatment for Texture of *Flax Seed Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.42*</td>
<td>1.26*</td>
<td>0.92*</td>
<td>0.4</td>
</tr>
<tr>
<td>T3</td>
<td>1.02*</td>
<td>0.86*</td>
<td>0.52*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.5*</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (69). Analysis of variance data for Flavour of *Flax Seed Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>16.015</td>
<td>4.003</td>
<td>38.123</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.911</td>
<td>0.477</td>
<td>4.542</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.681</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>19.607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (70) Comparison between treatment for Flavour of *Flax Seed Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>2.12*</td>
<td>1.92*</td>
<td>1.34*</td>
<td>0.52*</td>
</tr>
<tr>
<td>T3</td>
<td>1.52*</td>
<td>1.34*</td>
<td>0.74*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.8*</td>
<td>0.6*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (71). Analysis of variance data for Overall acceptability of *Flax Seed Puri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>7.006</td>
<td>1.75</td>
<td>875.75</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.752</td>
<td>0.688</td>
<td>344</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.042</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (72) Comparison between treatment for Overall acceptability of *Flax Seed Puri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.49*</td>
<td>1.24*</td>
<td>0.84*</td>
<td>0.38*</td>
</tr>
<tr>
<td>T3</td>
<td>1.11*</td>
<td>0.86*</td>
<td>0.46*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.65*</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.25*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (73). Analysis of variance data for Colour of *Multi Flour Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>5.59</td>
<td>1.397</td>
<td>8.958</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.214</td>
<td>0.303</td>
<td>1.94</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.506</td>
<td>0.156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>9.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (74) Comparison between treatment for Colour of *Multi Flour Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>1.28*</td>
<td>0.8*</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>T3</td>
<td>1.18*</td>
<td>0.7*</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.88</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.48*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (75). Analysis of variance data for Texture of *Multi Flour Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>20.532</td>
<td>5.133</td>
<td>81.47</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.736</td>
<td>0.684</td>
<td>10.85</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.012</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>24.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (83) Comparison between treatment for Texture of *Multi Flour Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>2.54*</td>
<td>1.92*</td>
<td>1.48*</td>
<td>0.62*</td>
</tr>
<tr>
<td>T3</td>
<td>1.92*</td>
<td>1.3*</td>
<td>0.86*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>1.06*</td>
<td>0.44*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.62*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (76). Analysis of variance data for Flavour of *Multi Flour Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>22.71</td>
<td>5.67</td>
<td>55.58</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.88</td>
<td>0.47</td>
<td>4.607</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.64</td>
<td>0.102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>26.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (77) Comparison between treatment for Flavour of *Multi Flour Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>2.62*</td>
<td>2.12*</td>
<td>1.64*</td>
<td>0.68*</td>
</tr>
<tr>
<td>T3</td>
<td>1.94*</td>
<td>1.44*</td>
<td>0.96*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.98*</td>
<td>0.48*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.5*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (78). Analysis of variance data for Overall acceptability of *Multi Flour Khurma*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>13.68</td>
<td>3.42</td>
<td>201.17</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.77</td>
<td>0.442</td>
<td>26.02</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.25</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>15.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (79) Comparison between treatment for Overall acceptability of *Multi Flour Khurma* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>2.13*</td>
<td>1.53*</td>
<td>1.21*</td>
<td>0.59*</td>
</tr>
<tr>
<td>T3</td>
<td>1.54*</td>
<td>0.94*</td>
<td>0.62*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.92*</td>
<td>0.32*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.6*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (80) Analysis of variance data for Colour of *Multi Flour Meethi Kachuri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.862</td>
<td>0.215</td>
<td>5.97</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>2.29</td>
<td>0.572</td>
<td>15.88</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.578</td>
<td>0.036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>3.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (81) Comparison between treatment for Colour of *Multi Flour Meethi Kachuri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.5*</td>
<td>0.48</td>
<td>0.44</td>
<td>0.32</td>
</tr>
<tr>
<td>T2</td>
<td>1.18*</td>
<td>0.16</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>1.06*</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>1.02*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (82). Analysis of variance data for Texture of *Multi Flour Meethi Kachuri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>5.794</td>
<td>1.4485</td>
<td>12.27</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.682</td>
<td>0.1705</td>
<td>1.444</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.894</td>
<td>0.118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (83) Comparison between treatment for Texture of *Multi Flour Meethi Kachuri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.36*</td>
<td>1.16*</td>
<td>1*</td>
<td>0.56*</td>
</tr>
<tr>
<td>T2</td>
<td>0.78*</td>
<td>0.6*</td>
<td>0.44*</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.34</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (84). Analysis of variance data for Flavour of *Multi Flour Meethi Kachuri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>16.804</td>
<td>4.201</td>
<td>13.33</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.596</td>
<td>0.149</td>
<td>0.473</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>5.04</td>
<td>0.315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>22.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (85). Comparison between treatment for Flavour of *Multi Flour Meethi Kachuri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T4</th>
<th>T0</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2.38*</td>
<td>1.72*</td>
<td>1.5*</td>
<td>0.76*</td>
</tr>
<tr>
<td>T2</td>
<td>1.62*</td>
<td>0.96*</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.88*</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (86). Analysis of variance data for Overall acceptability of *Multi flour Meethi Kachuri*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>6.426</td>
<td>1.6065</td>
<td>28.68</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.554</td>
<td>0.1385</td>
<td>2.47</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>0.91</td>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>7.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E(87) Comparison between treatment for Overall acceptability of *Multi flour Meethi Kachuri* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T4</th>
<th>T0</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.35*</td>
<td>1.25*</td>
<td>1.08*</td>
<td>0.52*</td>
</tr>
<tr>
<td>T2</td>
<td>0.83*</td>
<td>0.73*</td>
<td>0.56*</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>0.27</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (88). Analysis of variance data for Colour of *Multi Flour Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>7.39</td>
<td>1.8476</td>
<td>12.65</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.438</td>
<td>0.3595</td>
<td>2.46</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>3.342</td>
<td>0.146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>11.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (89) Comparison between treatment for Colour of *Multi Flour Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.48*</td>
<td>1*</td>
<td>0.6*</td>
<td>0.16</td>
</tr>
<tr>
<td>T3</td>
<td>1.32*</td>
<td>0.84*</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.98*</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (90). Analysis of variance data for Texture of *Multi Flour Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>16.172</td>
<td>4.043</td>
<td>60.34</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.324</td>
<td>0.081</td>
<td>1.20</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>1.084</td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>17.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (91) Comparison between treatment for Texture of *Multi Flour Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>2.27*</td>
<td>1.73*</td>
<td>0.92*</td>
<td>0.63*</td>
</tr>
<tr>
<td>T3</td>
<td>1.64*</td>
<td>1.1*</td>
<td>0.34*</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.3*</td>
<td>0.76*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.54*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (92). Analysis of variance data for Flavour of *Multi Flour Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>17.06</td>
<td>4.265</td>
<td>15.56</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.82</td>
<td>0.205</td>
<td>0.748</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>4.39</td>
<td>0.274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>22.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (93) Comparison between treatment for Flavour of *Multi Flour Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T2</th>
<th>T1</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>2.42*</td>
<td>1.64*</td>
<td>1.62*</td>
<td>0.66</td>
</tr>
<tr>
<td>T3</td>
<td>1.76*</td>
<td>0.98*</td>
<td>0.96*</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.8*</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>0.78*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (94). Analysis of variance data for Overall acceptability of *Multi Flour Ladoo*.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>9.18</td>
<td>2.295</td>
<td>5.68</td>
<td>3.01</td>
<td>S*</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.42</td>
<td>0.105</td>
<td>0.259</td>
<td>3.01</td>
<td>NS*</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>6.47</td>
<td>0.404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>16.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (95) Comparison between treatment for Overall acceptability of *Multi Flour Ladoo* against C.D.

<table>
<thead>
<tr>
<th>Treatment mean value</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>1.74*</td>
<td>1.01*</td>
<td>0.58</td>
<td>0.18</td>
</tr>
<tr>
<td>T3</td>
<td>1.56*</td>
<td>0.83</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>1.16*</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (96) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Carrot Balu Shahi* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.96</td>
<td>0.24</td>
<td>0.360</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.56</td>
<td>0.14</td>
<td>0.210</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>10.64</td>
<td>0.665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>12.16</td>
<td>0.506</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (97) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Carrot Ladoo* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.54</td>
<td>0.16</td>
<td>0.430</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.24</td>
<td>0.06</td>
<td>0.161</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>5.96</td>
<td>0.372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>10.24</td>
<td>0.426</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (98) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Carrot Cookies* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>1.04</td>
<td>0.26</td>
<td>0.331</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.44</td>
<td>0.36</td>
<td>0.458</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>12.56</td>
<td>0.785</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>14.24</td>
<td>0.593</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (99) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Lotus Stem Puri* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>1.04</td>
<td>0.26</td>
<td>0.634</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.64</td>
<td>0.16</td>
<td>0.390</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>6.56</td>
<td>0.41</td>
<td>0.347</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8.24</td>
<td>0.343</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (100) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Lotus Stem Ladoo* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.64</td>
<td>0.16</td>
<td>0.347</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.24</td>
<td>0.06</td>
<td>0.130</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>7.36</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8.24</td>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (101) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Lotus Stem Noodles* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.235</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.8</td>
<td>0.2</td>
<td>0.470</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>6.8</td>
<td>0.425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (102) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Flax Seed Puri* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.16</td>
<td>0.04</td>
<td>0.090</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.96</td>
<td>0.96</td>
<td>2.18</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>7.04</td>
<td>0.44</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8.16</td>
<td>0.34</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (103) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Flax Seed Ladoo* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>1.04</td>
<td>0.26</td>
<td>0.825</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.04</td>
<td>0.26</td>
<td>0.825</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>2.16</td>
<td>0.315</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>4.24</td>
<td>0.176</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (104) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Flax Seed Khurma* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>1.04</td>
<td>0.26</td>
<td>0.399</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.64</td>
<td>0.16</td>
<td>0.242</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>10.56</td>
<td>0.66</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>12.24</td>
<td>0.51</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table E (105) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Multi Flour Ladoo* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>1.44</td>
<td>0.36</td>
<td>0.317</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.64</td>
<td>0.16</td>
<td>0.140</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>18.16</td>
<td>1.135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>20.24</td>
<td>0.843</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (106) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Multi Flour Khurma* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.24</td>
<td>0.06</td>
<td>0.098</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>0.24</td>
<td>0.06</td>
<td>0.098</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>9.76</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>10.24</td>
<td>0.426</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E (107) Analysis of Variance of Total plate Count (TPC) of Control and Experimental *Multi Flour Meethi Kachuri* Samples.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>d.f.</th>
<th>S.S.</th>
<th>M.S.S.</th>
<th>F-cal</th>
<th>F-tab (5%)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to treatment</td>
<td>4</td>
<td>0.56</td>
<td>0.14</td>
<td>0.271</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to replication</td>
<td>4</td>
<td>1.36</td>
<td>0.36</td>
<td>0.699</td>
<td>3.01</td>
<td>NS**</td>
</tr>
<tr>
<td>Due to error</td>
<td>12</td>
<td>8.24</td>
<td>0.515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>10.16</td>
<td>0.423</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX-F

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Flour’s</th>
<th>Botanical Name</th>
<th>Nutrients</th>
<th>Health Benefits</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Carrot Flour</td>
<td>Daucus carota</td>
<td>Phytonutrients, carotenoids, polyphenols, fibre and vitamins.</td>
<td>• Supporting healthy eyesight
• Revitalizing & purifying the blood
• Helps maintain acid-alkaline balance within the body
• High in phytonutrients
• Supporting healthy cholesterol levels
• Diuretic properties
• Beneficial for the liver
• Antidiarrheal & antianemic properties
• Helps to cleanse the intestines
• Excellent source of vitamins B and C</td>
<td>Carrot cakes, Carrot puddings, Carrot Balu shahi, Carrot Ladoo, Cookies, Carrot Khurma, Carrot Halwa, Carrot Puri, carrot Flour used in acne, dryness, wound and burns, sun burn, wrinkle, stretch marks and as a scrubs in cosmetics.</td>
</tr>
<tr>
<td>2.</td>
<td>Lotus Stem Flour</td>
<td>Nelumbo nucifera</td>
<td>Lipids, phospholipids, flavonoids, carotenes, xanthophills, starch, tannate, protein, iron, vitamins B and Vit.C.</td>
<td>• To reduce blood cholesterol, sugar, body weight and constipation.
• It is required for the collagen synthesis in the body. Collagen is the main structural protein in the body required for maintaining the integrity of blood vessels, skin, organs, and bones.
• Protect scurvy, develop resistance against viral infection, boosts immunity, and remove cancer.</td>
<td>Used in the treatment of diarrhea, dysentery, cancer, obesity and skin ailments. It is use for the production of red blood cells.</td>
</tr>
<tr>
<td>No.</td>
<td>Ingredient</td>
<td>Scientific Name</td>
<td>Benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 3. | Flax Seed Flour | *Linum usitatissimum* | - To protective effect against breast cancer, prostate cancer, and colon cancer.
- Inhibited attack and strokes.
- To decrease inflammatory reactions in tumor incidence and growth.
- To reduce atherosclerotic plaque.
- Reducing inflammation associated with plaque buildup in the arteries. Flaxseed helps prevent heart attacks and strokes.
- Help to delay gastric emptying and can improve intestinal absorption of nutrients.
- To decrease, type 2 diabetes, asthma, obesity, and metabolic syndrome.
- Its use in Abdominal pain, acne, acute respiratory distress syndrome (ARDS), allergic reactions (delayed hypersensitivity reactions), anticoagulant (blood thinner), colon cancer, cough suppressant, cystitis, depression, diabetic nephropathy, diarrhea, diverticulitis, dry skin, dysentery Eczema, enteritis Gastritis headache, infections, inflammation, interstitial nephritis laxative-induced colon damage, liver protection, malaria, menstrual luteal phase disorders, multiple sclerosis, ovarian disorders, pharyngitis, pimples, psoriasis, skin infections, skin inflammation, skin irritation, sore throats, stomach pain, ulcerative colitis, upper respiratory tract infection, urinary tract infection, vaginitis (vaginal inflammation), vision improvement. |