Preface

Chapter-1 A brief introduction to nano science, photoluminescence and rare earth luminescence

1.1 General Introduction

1.2 Nanoscience

1.2.1 Nanoparticles and nanotechnology

1.2.2 Synthesis of nanoparticles

1.3 Photoluminescence

1.4 Rare earth (RE) elements

1.4.1 Lanthanide oxide

1.4.1(a) Oxides $\text{Ln}_2\text{O}_3$

1.4.1(b) Oxides $\text{LnO}_2$

1.4.1(c) Oxides $\text{LnO}$

1.5 Photoluminescence of lanthanide ions

1.5.1 Radiative process

1.5.2 Non-radiative process

1.6 Quenching process PL

1.6.1 Multi-phonon emission

1.6.2 Energy transfer between lanthanide ions

1.6.3 Cross-relaxation

1.6.4 Up-conversion

1.7 Zinc oxide as a promising candidate for host

1.8 Outlook of the Thesis

References

Chapter-2 Characterization and instrumentation techniques

2 Introduction

2.1 X-ray diffraction (XRD)

2.2 Scanning electron microscopy (SEM)

2.3 Transmission electron microscopy (TEM)

2.4 Atomic force microscopy (AFM)

2.5 Fourier transform infrared spectroscopy (FTIR)

2.6 UV-visible spectroscopy
Chapter-3  Multicolor emission from single Eu3+ ion doped La2O3 nanoparticles

3.1  Introduction

3.2  Experimental Section

3.2.1  Reagents and materials

3.2.2  Synthesis of Eu3+ doped La2O3 nanoparticles

3.2.3  Characterization of Nanoparticles

3.3  Results and discussion

3.3.1  Thermogravimetric analysis (TGA) study

3.3.2  X-ray diffraction (XRD) study

3.3.3  Fourier transform infrared (FTIR) spectroscopy study

3.3.4  Transmission electron microscopy (TEM) study

3.3.5  Photoluminescence (PL) study

3.3.5.1  As-prepared sample (biphasic- La(OH)3 and La2O2CO3)

3.3.5.2  500 °C heated sample (La2O2CO3)

3.3.5.3  700 °C heated sample (La2O3)

3.3.5.4  900 °C heated sample (La2O3)

3.3.5.5  1000 °C heated sample (La2O3)

3.3.5.6  1200 °C heated sample (La2O3)

3.3.6  Relationship between structure and luminescence

3.3.7  CIE chromaticity diagram

3.3.8  Ageing effect

3.3.9  Dispersion and thin film formation

3.4  Conclusions

References

Chapter-4  Blue and green emission from Ce3+ and Tb3+ co-doped Y2O3 nanoparticles
Chapter 4

4.1 Introduction

4.2 Experimental Section

4.2.1 Synthesis

4.2.2 Characterization

4.3 Results and Discussion

4.3.1 Thermogravimetric analysis (TGA/DTA) study

4.3.2 Fourier transform infrared spectroscopy (FTIR) study

4.3.3 X-ray diffraction (XRD) study

4.3.4 Transmission electron microscopy (TEM) study

4.3.5 EDX spectroscopy study

4.3.6 UV-Vis spectroscopy study

4.3.7 Luminescence study

4.3.7.1 Tb$_{0.06}$Y$_{1.94}$O$_3$

4.3.7.2 Ce$_x$Tb$_{0.06}$Y$_{1.94-x}$O$_3$ ($x = 0.01, 0.02$ and $0.04$)

4.4 Conclusions

References

Chapter 5

Red, yellow, blue and green emission from Eu$^{3+}$, Dy$^{3+}$ and Bi$^{3+}$ doped Y$_2$O$_3$ nanophosphors

5.1 Introduction

5.2 Experimental

5.2.1 Preparation of Eu$^{3+}$, Dy$^{3+}$ and Bi$^{3+}$ doped Y$_2$O$_3$ nanoparticles

5.2.4 Characterization

5.3 Results and Discussion

5.3.1 Thermogravimetric analysis (TGA/DTA) study

5.3.2 X-ray diffraction (XRD) study

5.3.3 Fourier transform infrared spectroscopy (FTIR) study

5.3.4 Scanning electron microscopy (SEM) & Energy dispersive X-ray spectroscopy (EDS) study

5.3.5 Photoluminescence study

5.3.5.1 Eu$^{3+}$:Y$_2$O$_3$ photoluminescence

5.3.5.2 Dy$^{3+}$:Y$_2$O$_3$ photoluminescence