Contents

Abstract

List of figures

List of tables

List of equations

List of acronyms

I The context 0

1 Introduction 1

 1.1 Background 1

 1.2 The problem statement 2

 1.2.1 Research questions 2

 1.3 Motivation 2

 1.4 Software in safety-critical systems 5

 1.5 Software in nuclear reactors 6

 1.6 Software failures in nuclear industry 6

 1.7 Issues in software reliability quantification 7

 1.8 Need for a new approach 8

 1.9 This thesis 9

 1.9.1 Assumptions and limitations 9

 1.9.2 Structure 11
Contents

2 Related work 13
 2.1 In formal methods 13
 2.2 In model checking 18
 2.3 In safety-critical software development, V&V 19
 2.4 In software testing and test coverage 20
 2.5 In mutation testing and test adequacy 23
 2.6 In software reliability growth models (SRGM) 26
 2.7 In Bayesian belief network 27
 2.8 In architecture based approaches 27
 2.9 Summary ... 31

3 Background information 32
 3.1 Instrumentation and control in nuclear reactors 32
 3.2 Case studies used in the present study 34
 3.2.1 Fresh subassembly handling system 34
 3.2.2 Reactor start-up system 35
 3.2.3 Steam generator tube leak detection system 35
 3.2.4 Core temperature monitoring system............... 36
 3.2.5 Radioactive gaseous effluent system 37
 3.2.6 Safety grade decay heat removal system 39

II Studies on software reliability 40

4 Research methodology 41
 4.1 Software reliability definition 41
 4.2 Choice of case-studies 42
 4.3 Method .. 42
 4.4 Experimental details 43
 4.4.1 Software under test 43
 4.4.2 Software testing 44
 4.4.3 Parallel processing 44
6.3.1 Factors affecting the estimated reliability 81
6.3.2 Achieving target reliability ... 81
6.3.3 Properties of the software ... 82
6.4 Results, discussions, and critical review 83
6.5 Summary of results ... 85

7 Some properties of software reliability 86
 7.1 Software reliability vs. number of faults in the software 86
 7.2 Software reliability vs. results of static, dynamic analysis .. 87
 7.3 Software reliability vs. safety 93
 7.4 Summary of results ... 94

8 Summary and open problems .. 96
 8.1 Contributions .. 96
 8.2 Observations ... 97
 8.3 Open problems .. 98
 8.4 Conclusion ... 99

III Appendices .. 100

A Semi-formal software specification 101
 A.1 List of Drakon notations ... 101
 A.2 An example of semi-formal specification 103

B List of mutant operators .. 109

C Data for PCA of mutant characteristics 111

References ... 121

Figure citations .. 137