NOMENCLATURE

A - Angstrom
°C - Degree Centigrade
e - Electronic charge (\(=1.6\times10^{-19}\) coulomb)
E - Electric Field
I - Current
J - Current density or Joule (Unit)
k - Boltzmann's Constant (\(=8.615\times10^{-5}\) eV/degree Kelvin)
°K - Degree Kelvin
M - Metre
Q - Charge
t - Time
T - Temperature
U - Activation Energy
V - Volts
\(\sigma\) - Electrical Conductivity (Ohm x cm)\(^{-1}\) or Capture cross Section (cm)\(^2\)
\(\phi\) - Work Function
\(\mu\) - Mobility or Dipole Moment
\(\epsilon\) - Relative Dielectric Constant
\(\epsilon_0\) - Permittivity of free space (\(=8.85\times10^{-12}\) MKS Unit)
\(\gamma\) - Attempt to escape Frequency
\(\tau\) - Relaxation time
\(\beta\) - Heating Rate
cm - Centimetre
eV - Electron volt (= 1.6 x 10^{-19} J)

nm - Neno Metre (= 10 Å)

μm - Micro Metre (= 10^{-4} cm)

Ep - Polarising Field

Tg - Rubber-Glass Transition Temperature

tp - Polarising time

Tp - Polarising Temperature

Vp - Polarising Voltage

BP - Boiling Point

Cell.Ac. - Cellulose Acetate

EC - Ethyl Cellulose

PC - Poly Carbonate

PE - Poly Ethylene

PF - Poole-Frenkel

PP - Poly Propylene

RS or SR - Richardson-Schottky or Schottky Richardson

SC - Spontaneous Current

CTC - Charge Transfer Complex

PAN - Poly Acrylo Nitrile

PET - Poly Ethylene Terephthalate

PIP - Persistent Internal Polarisation

PP Ac - Poly Phenyl Acetylene

PVA - Poly Vinyl Alcohol

PV Ac - Poly Vinyl Acetate

PVB - Poly Vinyl Butyral

(vi)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVF</td>
<td>Poly Vinyl Fluoride</td>
</tr>
<tr>
<td>PVK</td>
<td>Poly Vinyl Carbazole</td>
</tr>
<tr>
<td>SCE</td>
<td>Spontaneous Current Emission</td>
</tr>
<tr>
<td>TSD</td>
<td>Thermally Stimulated Discharge</td>
</tr>
<tr>
<td>PMA</td>
<td>Poly Methyl Metha Acrylate</td>
</tr>
<tr>
<td>PVDF</td>
<td>Poly Vinyldene Fluoride</td>
</tr>
<tr>
<td>TSDC</td>
<td>Thermally Stimulated Discharge Current</td>
</tr>
<tr>
<td>I_{DDDIP}</td>
<td>Dark Decay Current (due to) Dark Polarisation</td>
</tr>
</tbody>
</table>
| I_{DDAPP} | Dark Decay Current (due to) Photo Polarisation