

of the cell wall in relation to infective processes.

(Citrus sinensis (Linn.) Osback) caused by Rhizoctonia

Colletotrichum lindamuthianum and Helminthosporium
maydis during growth on isolated bean and corn cell walls.

interactions V. Comparison of the abilities of
proteins isolated from three varieties of Phaseolus
vulgaris to inhibit the endopolygalacturonase secreted
by three races of Colletotrichum lindamuthianum.

and New York.

Atri, D.C., 1980. A study of fruit rot disease of Pyrus
pyrifolia Burm. of (PEAP) caused by Botryodiplodia

interaction between pectic enzymes or their soluble reaction products and plant cells. Phytopathology, 65: 141-153.

Bilgrami, R.S. and R. Verma, 1978. Possible role of cellulase in rots of Lycopersicum esculentum, Lagenaria vulgaris caused by Cylindrocarpon tonkinense and Fusarium semitectum (Abst). All India Symposium on Physiology of Parasitism, Jabalpur Univ., M.P.

factor of *Penicillium digitatum* Saccardo.
Phytochemistry, 7: 763.

Chand, J.N., B.K. Rattan and D. Suryanarayana, 1964. Epidemiology
and control of fruit rot of citrus caused by

Cole, J.S., 1956. The pathogenicity of \textit{Botrytis} cinerea, \textit{Sclerotium fructigena} and \textit{Sclerotinia laxa} with special
reference to the part played by pectolytic enzymes.

England.

Colong, F.D., A.H. Feilding, R.J.M. Byrde and O.A. Akinrefon,
1969. Changes in ultrastructure following fungal
invasion and the possible relevance of extracellular

vesicatoria on loss of electrolytes from leaves of

and morre quantitative bioassay for polygalacturonases
using pectate trans-eliminase from Erwinia arosetpica.

72: 241-249.

Dumale, V.P., 1952. Enzymatic study of certain parasitic

Granger, K. and A.S. Horne, 1924. A method of inoculating the

Phytopathology, 53: 877.

Horton, J.C. and N.T. Keen, 1966. Sugar repression of endopolygalacturonase and cellulase synthesis during pathogenesis by Pyrenochaeta terrestris as a resistance

Keen, N.T. and D.C. Erwin, 1971. Enzyme-Polygalacturonase of
Pyrenochaet a terrestris. Phytopathology, 56: 603-609.

solanacerum in relation to pathogenesis. Phytopathology,
55: 304-309.

from Phytophthora infestans (Mout.). Phytochemistry, 7:
1289-1291.

Lalitha Kumari, H. and M. Sirsi, 1971. Purification and
properties of endopolygalacturonase from Gonoderma

Lampen, J.O., E.R. Morgan and A. Slocum, 1957. Effect of
nystatin on the utilization of substrate by yeast and

Lamport, D.T., 1967. Hydroxyprotei n-O-glucosidic linkage of
the plant cell wall glycoprotein extension. Nature,
Lond., 216: 1322-1324.

Lauritzen, J.I. and L.L. Marter, 1925. The influence of
temperature on the infection and decay of sweet potatoes

Lumsden, R.D. and L.D. Roberta, 1970. Polygalacturonase production by *Sclerotinia sclerotiorum* in young cultures and in bean tissue during early stages of pathogenesis. Phytopathology, 60:

Owens, R.G., 1953. Studies on the nature of fungicidal action, I. Inhibition of sulphydryl, amino ion, and copper-

Oxford, A.E., 1944. Production of soluble pectinase in a simple medium by certain plant pathogenic bacteria belonging to the genus Pseudomonas.

sugars and its effect on symptom reduction in infected plants. Phytopathology, 58: 676-682.

Reen, L., 1971. Virulence of *Pythium* spp. on potato tuber and capacity to produce pectic enzymes. Ind. Phytopath.,

Satyanarayana, T., 1978. Thermophilic microorganisms and their
role in composting process. Ph.D. thesis, Univ. of Saugar, Sagar, India.

Lattice complex: 1. The regular network of fixed points about which molecules atoms ions vibrate in a crystal.

2. In a nuclear reactor a structure consisting of discrete bodies of fissile and non-fissile material, arranged in a regular geometrical pattern.

Strider, D.L. and N.N. Winstead, 1961. Production of cell wall

Tandon, R.N. and M.P. Tandon, 1948. Some pathological studies of *Pestalotia* sp. isolated from rotten hill apples.

Phytopathology, 53: 961-964.

* Original not seen.