LIST OF FIGURES

Figure 1.1: WHO Statistics on global cause of deaths.................................1
Figure 1.2: The schematic representation of the research strategy adopted to
develop a functional cardiac patch in vitro, for myocardial
regeneration..5
Figure 1.3: (A) shows heart after acute MI. (B) is a cross-section of a coronary
artery with plaque buildup and a blood clot...10
Figure 1.4: Normal vs. Infarcted Heart. Left ventricle has a thick muscular wall in
normal heart, after heart attack cardiomyocytes in the left ventricle die
due to ischemia, eventually causing the ventricular wall to dilate and
become thinner...11
Figure 1.5: In vitro myocardial tissue engineering approaches A) tissue
engineering using preformed scaffolds and cells B) tissue engineering
using soluble matrices and cells C) tissue engineering using cell sheet
technology..15
Figure 2.1.1: Diagrammatic representation of electrospinning setup used for the
fabrication of nanofibrous fibrin scaffolds...35
Figure 2.2.1: Diagrammatic representation of electrospinning setup used for the
fabrication of PCL-fibrin multiscale scaffolds...41
Figure 2.3.1: Diagrammatic representation of electrospinning setup used for the
fabrication of PLGA-fibrin multiscale scaffolds...46
Figure 2.4.1: a) Scaffold holder and perfusion cartridge b) scaffold holders
containing cell seeded scaffolds and c) the bioreactor setup used to
give electromechanical stimulation to the cell seeded scaffolds.............55
Figure 2.5.1: Isolation and seeding of mononuclear cells from rat bone marrow...57
Figure 3.1.1: Scanning electron micrograph of electrospun fibrin structure at control
parameters (15-30 kV voltage, 0.3-1.0 mL/hour flow rate, 10-15 cm
working distance, and 25-50 mg/mL fibrinogen solution and 50-100
U/ml thrombin solution) at different magnifications a) 500X and b)
2500X………………………………………………………………62

Figure 3.1.2: Scanning electron micrograph of electrospun PVA-fibrin structure at
a) 8 % PVA concentration b) 4 % PVA concentration and c) 6 %PVA
concentration (spinning parameters: 15 kV voltage, 0.4 mL/hour flow
rate, 10 cm tip target distance) d) high magnification image showing
fiber diameter distribution …………………………………………63

Figure 3.1.3: Scanning electron micrograph of electrospun PVA-fibrin structure at
6% PVA concentration a) before and b) after removal of PVA………65

Figure 3.1.4: FTIR spectra of a) PVA b) Fibrin and c) PVA-Fibrin. The
characteristic bands of fibrin appeared at 3310 cm$^{-1}$ (N-H stretch),
1649 cm$^{-1}$ (amide I band), 1500 cm$^{-1}$ (amide II band) and 1250 cm$^{-1}$
(amide III band) ………………………………………………………66

Figure 3.1.5: Light microscopic image of a) PVA-Fibrin scaffold b) PVA fibrin after
removal of PVA observed with 60X oil immersion objective………67

Figure 3.1.6: Isolation and primary culture of cord blood MSCs. a) is the photograph
showing buffy coat containing mononuclear cells (MNC) after ficoll
gradient centrifugation b), c) and d) are MSCs grown on the tissue
culture plates at 7th, 9th and 12th day of cell seeding e) typical
morphology of the MSCs at passage 1 ………………………………67

Figure 3.1.7: Dual flowcytometric analysis of UCB-hMSCs after passage 3 for MSC
specific surface markers like CD44, CD73, CD90 and CD29 against
the lineage specific markers CD 31 (endothelial cells), CD33 (myeloid
cells), CD 34 (haematopoetic cells) and CD45 (leucocytes) ………68

Figure 3.1.8: SEM image of MSCs grown on ES- fibrin scaffold for 6h (a&b) and
for 48h (c&d)……………………………………………………………..69
Figure 3.1.9: Merged fluorescent images of F-Actin filaments (Red) stained with TRITC-conjugated phalloidin and DAPI stained nuclei (blue) of cells grown ES-Fibrin for 24 h at a) 10X and b) 60X.70

Figure 3.1.10: Fluorescence images of UCB-hMSCs grown on ES-Fibrin over a period of 24 h. Fibrin promote the formation of stress fibers and focal adhesions that contain vinculin. Upper panel shows well defined ‘dash like focal adhesions’as indicated by the presence of vinculin (green). Nuclei are stained with PI (Red). 71

Figure 3.1.11: Fluorescence image of the DAPI stained nuclei of UCB-hMSCs grown on polystyrene cover slips a) 6h b) 48h & c)96h (upper panel), ES-Fibrin scaffold d)6h e) 48 h & f) 96h (middle panel) and fibrin coated coverslips g) 6h, h) 48h & I)96h j) Cell proliferation/metabolic activity were evaluated by Alamar blue assay. Significance value: * P <0.01; ** P <0.001 compared to cells grown on TCPS and on fibrin coated cover slips (n=4).72

Figure 3.1.12: Upper panel shows the fluorescence images of MSCs grown on electrospun fibrin showing cardiac specific proteins a)tropomyosin(red), b)α-sarcomeric actinin (green) c) ANP (red) and d) troponin (green) after 7 days of cardiac differentiation induction. Nuclei are stained with DAPI (blue). Lower panel shows flowcytometric histogram showing percentage of cells expressing a)tropomyosin, b)α-sarcomeric actinin c) ANP and d) troponin at 7 days. 73

Figure 3.1.13: Upper panel shows the fluorescence images of MSCs grown on electrospun fibrin showing cardiac specific proteins a)tropomyosin(red), b)α-sarcomeric actinin (green) c) ANP (red) and d) troponin (green) after 14 days of cardiac differentiation induction. Nuclei are stained with DAPI (blue). Lower panel shows flowcytometric histogram showing percentage of cells expressing...
a) tropomyosin, b) α-sarcomeric actinin c) ANP and d) troponin at 14 days.

Figure 3.1.14: Masson’s trichrome staining of the scaffolds indicating the presence of newly formed collagen. a) Stained scaffold after 14 days of cell culture, fibrin (red), collagen (blue) b) scaffold after 21 days, collagen (blue)

Figure 3.2.1: SEM Micrographs of electrospun a) PCL-Fibrin and b) PCL multiscale scaffold

Figure 3.2.2: Contact angle data of electrospun a) PCL b) PCL-Fibrin fibers

Figure 3.2.3: Light microscopic image of PTAH stained electrospun PCL- Fibrin observed with 100X oil immersion objective

Figure 3.2.4: Stress strain curve of PCL and PCL Fibrin electrospun multiscale membranes

Figure 3.2.5: Upper panel shows the SEM images of hMSCs grown on PCL multiscale scaffold a) after 2 h of cell seeding b&c) after 48 h at different magnifications. Lower panel shows the images of hMSCs grown on the PCL-Fibrin multiscale scaffold d) after 2 h and e&f) after 48 h of cell culture

Figure 3.2.6: Confocal microscopy images of hMSCs grown on PCL and PCL fibrin scaffolds over a period of 48 h. Upper panel shows the merged images of several Z-sections. a) Electrospun PCL, b) fibrin coated electrospun PCL and c) electrospun PCL-Fibrin scaffold. Lower panel is the reconstructed 3-D images showing cellular infiltration. d) Electrospun PCL, e) fibrin coated electrospun PCL and f) electrospun PCL-Fibrin scaffold. Actin (red), nuclei (blue) and fibers (green).

Figure 3.2.7: Confocal microscopy images of hMSCs grown on PCL and PCL fibrin scaffolds, a& c) at 2h and b&d) after 48h respectively. Fibrin promote the formation of stress fibers and focal adhesions that contain vinculin (green). F- Actin filaments are seen in red. Fibers are given blue
colour. Actin filaments and vinculin focal adhesions were visible in 2h in the cells seeded on the composite scaffolds. Focal adhesions that appear yellow indicate the regions of actin-vinculin colocalization.

Figure 3.2.8: hMSC proliferation on electrospun scaffolds. Cell proliferation/metabolic activity were evaluated by Alamar blue assay. Significance value: ** P <0.001 compared to cells grown on PCL multiscale scaffold (n=4).

Figure 3.2.9: Fluorescence image of the DAPI stained nuclei of hMSCs grown on PCL multiscale scaffold a) 6h b) 48h & c) 96h (upper panel) and on PCL-Fibrin multiscale scaffold d) 6h e) 48h & f) 96h (lower panel).

Figure 3.2.10: a) Representative flow cytometric dot plots of the pro-inflammatory cytokine response of peripheral blood mononuclear cells to the electrospun scaffolds, b, c, d, e and f are the graphical representation of the cytokine release from the monocytes grown on different scaffolds for 24 h compared to negative control and LPS stimulated positive control. NC-Negative control, PC-Positive control, PCL-PCL multiscale scaffold, PCLF-PCL fibrin multiscale scaffold.

Figure 3.3.1: SEM Micrographs of PLGA–Fibrin electrospun membrane a) at 1000X showing the multiscale nature of the scaffold b) 20000X showing the nano fiber diameter distribution c) 5000X showing the microfiber diameter distribution.

Figure 3.3.2: Contact angle data of a) Pure PLGA fibers b) PLGA-Fibrin fibers.

Figure 3.3.3: Light microscopic image of PTAH stained PLGA- Fibrin scaffold observed with 100X oil immersion objective.

Figure 3.3.4: SEM images of MSCs grown on a) PLGA scaffold and b) PLGA-Fibrin after 24h of cell culture.
Figure 3.3.5: Confocal microscopy images of MSCs grown on electrospun PLGA fibrin over a period of 48 h. a) merged image of several Z-sections. b) Reconstructed 3-D image showing cellular infiltration. Actin (red), nuclei (blue) and fibers (green). .. 94

Figure 3.3.6: Cell survival and morphology of MSCs grown on electrospun fibers as determined by live/dead assay. Confocal microscopy images of cells grown on PLGA (a&c) and PLGA-Fibrin composite fibers (b&d) for 24h and 72h respectively. Live cells shows green and dead shows red fluorescence. Fibers are shown in blue. ... 95

Figure 3.3.7: DNA quantification by picogreen assay a) DNA content from the cells grown on PLGA and PLGA fibrin scaffolds for 14 days at different time points b) Number of cells on scaffolds based on DNA quantification. ... 96

Figure 3.3.8: a) Representative flow cytometric dot plots of the pro-inflammatory cytokine response of peripheral blood mononuclear cells to the electrospun scaffolds, b, c, d, e and f are the graphical representation of the cytokine release from the monocytes grown on electrospun scaffolds for 24 h compared to negative control and LPS stimulated positive control. NC-Negative control, PC-Positive control, PLGA-PLGA multiscale scaffold, PLGA-F-PLGA-fibrin multiscale scaffold.. 97

Figure 3.3.9: Flowcytometry data of cardiac differentiation markers. Graphical representation of percentage of cells expressing the differentiation markers after a) 7 days and b) 14 days of culture on both types of scaffolds... 99

Figure 3.3.10: Confocal microscopy images of MSCs grown on PLGA-Fibrin composite fibers after 14days of induction of cardiac differentiation expressing a) cardiac troponin (green), nuclei stained with sytox
orange (orange), fibers (blue) b) α-sarcomeric actinin (red), nuclei stained with DAPI (blue), fibers (green) and c) tropomyosin (red), nuclei stained with DAPI (blue), fibers (green)99

Figure 3.3.11: Graphical representation of fold increase in cardiac specific genes in the cells grown on PLGA-Fibrin scaffolds at different time points with respect to those grown on pure PLGA scaffolds101

Figure 3.3.12: D-Dimer assay in the culture supernatant. MSCs were grown on the scaffolds in cardiac differentiation medium after myogenic induction for 14 days and the culture supernatant collected at different time points were evaluated for the presence of D-Dimer.102

Figure 3.3.13: Light microscopy images of the PLGA-Fibrin matrices retrieved after a) 7 days b) 14 days and c) 21 days of MSC culture in cardiac differentiation medium stained with Masson’s trichrome stain. Fibrin appears in bright red color and collagen appears in blue color. d) Confocal microscopy image of the matrix retrieved after 21 days stained for anti collagen type I. Collagen shown in red color and fibers appear as green. ..103

Figure 3.3.14: SEM images of the PLGA-Fibrin matrices having different concentrations of PLGA and fibrin a) PLGA-F(A) b)PLGA-F(B) and c) PLGA-F(C) ..104

Figure 3.3.15: Merged images of several Z-sections of confocal microscopic images of MSCs grown on electrospun scaffolds over a period of 14 days after cardiomyocyte differentiation induction, stained with DAPI (blue) and actin (red), fibers are shown in green. Cells grown on a) PLGA-microfibrous scaffold, b) PLGA Micro-nano fibrous scaffold c) PLGA-Fibrin (A) d) PLGA-Fibrin (B), e)PLGA-Fibrin (C) and f) electrospun fibrin scaffold... 107

Figure 3.3.16: Graphical representation of flowcytometric data of cardiac specific protein (sarcomeric actin) expression on cardiomyocytes differentiated
from hMSCs grown on various types of scaffolds at different time points ...108

Figure 3.3.17: Graphical representation of flowcytometric data of cardiac specific protein (Troponin) expression on cardiomyocytes differentiated from hMSCs grown on various types of scaffolds at different time points. ...109

Figure 3.4.1: Fluorescence microscopy images of cells grown on PLGA-Fibrin electrospun membranes after electromechanical stimulation in a bioreactor, stained with live/dead stain. Live cells (green) and dead cells (red). a) at 24h and b) after 72h ...112

Figure 3.4.2: Fluorescence microscopy images of cells grown on PLGA-Fibrin electrospun membranes after electromechanical stimulation in a bioreactor, stained for connexin-43 and actin. Left panel shows the cells grown under static conditions and right panel shows cells grown under electromechanical stimulation. a&b) actin, c&d) nuclei stained with DAPI e&f) connexin-43 and g&h are the merged images of actin, DAPI and connexin-43 ..113

Figure 3.4.3: Graphical representation of mean connexin-43 spot count of cells grown on PLGA-Fibrin scaffolds under static conditions (control) and under electromechanical stimulation ..114

Figure 3.4.4: Microscopic image of the beating population of differentiated cardiomyocytes on PLGA-fibrin scaffold.................................115

Figure 3.4.5: Graphical representation of fold increase in cardiac specific genes in the cells grown on PLGA-Fibrin scaffolds under electromechanical stimulation with respect to those grown under static culture conditions. ...116

Figure 3.4.6: a) Photograph of cell seeded 3-D patch b) SEM image of 3-D patch ...117
Figure 3.5.1: Primary culture of rat bone marrow MSCs. a) and b) are MSCs grown on the tissue culture plates at 2nd and 5th day of cell seeding, c) typical morphology of the MSCs at passage 1 and d) Flowcytometric dot plot showing expression of CD90 which is an MSC marker. …119

Figure 3.5.2: Fluorescence microscopic image of rat MSCs grown on PLGA-Fibrin scaffolds showing cardiac specific proteins a) troponin (green) and b) sarcomeric actin(red) after 14 days of culture in cardiac differentiation medium. ………………………………………………………………120

Figure 3.5.3: Flow cytometric dot plots showing the expression of troponin and sarcomeric actin by differentiated cardiomyocytes on PLGA-Fibrin scaffolds at 7 days (upper panel) and 14 days (lower panel). ……121

Figure 3.5.4: Fluorescence microscopy images of rat cells grown on PLGA-Fibrin electrospun membranes after electromechanical stimulation in a bioreactor, stained with live/dead stain. Live cells (green) and dead cells (red). a) at 24h and b) after 72h …………………………………………122

Figure 3.5.5: Fluorescence microscopy images of rat cells grown on PLGA-Fibrin electrospun membranes after electromechanical stimulation in a bioreactor, stained for connexin-43, actin and nucleus. a) actin, b) connexin-43 c) nuclei and d) merged image showing actin, connexin-43 and nuclei. ……………………………………………………………………………122

Figure 3.5.5: Microscopic image of the beating population of differentiated cardiomyocytes from rat MSCs on PLGA-fibrin scaffold……….123