**LIST OF FIGURES**

1.1 India’s Oil Production and Consumption rate 3
1.2 India’s Dry Natural Gas Production and Consumption 4
3.1 Composition of LPG 52
3.2 Comparison of ozone forming potential of different fuels for cars during summer 54
3.3 Toxicity of carbon monoxide 70
4.1 Schematic diagram of combustion triangle 76
4.2 Cylinder pressure-crank angle history in 4-stroke SI engine operating cycle showing important cycle events 80
4.3 Representation of different stages of SI engine combustion process on cylinder pressure-crank angle trace 82
4.4 Variation with equivalence ratio of the adiabatic flame temperature of methane-air combustion 95
4.5 Schematic Diagram of CNG Flow Applicable for TATA City Bus 105
5.1 Overview of basic CNG conversion system 113
5.2 Overview of basic LPG conversion system 113
5.3 Components of CNG/LPG conversion system 114
5.4 Low Pressure Regulator (LPR)/Vaporizer 114
5.5. Unidirectional Receptacle Valve 116
5.6 Dashboard fuel switch/gauge 117
5.7 Cross- section of solenoid valve 121
5.8 Emulator 123
5.9 Gas flow meter 124
5.10 Cross section of a mixer 126
5.11 Air-Fuel Mixer 127
5.12 Diaphragm of 1st stage and 2nd stage vaporizer/LPR 127
5.13 Cylindrical Tank for CNG 129
5.14 Toroidal tank for CNG 129
5.15 Donut tank and torpedo tank for LPG 131
5.16 Working of MAP Timing Advance Processor 132
5.17 Components of Low pressure regulator/Vapourizor-1 134
5.18 Components of Low pressure regulator/Vapourizor-2 134
5.19 Free body diagram of a lever of LPR 135
5.20 Spring of 1st stage of LPR 139
6.1 Exhaust Gas Analyser 145
6.2 Experimental set-up with CNG conversion system 147
6.3 Spark advance measurement system 148
7.1.1 Variation of Brake Thermal Efficiency with Brake Power, Fuel: Gasoline, SA: 20° BTDC, RPM: 2000. 175
7.1.5 Variation of Mechanical Efficiency with Brake Power, Fuel: Gasoline, SA: 20° BTDC, RPM: 2000. 177
7.1.27 Variation of Brake Power with Equivalence Ratio, Fuel: Gasoline,


7.2.1 Variation of Brake Thermal Efficiency with Brake Power, Fuel: LPG, SA: 20° BTDC, RPM: 1500.

7.2.2 Variation of Brake Specific Fuel Consumption with Brake Power, Fuel: LPG, SA: 20° BTDC, RPM: 1500.


7.2.5 Variation of Fuel Consumption with Brake Power, Fuel: LPG, SA: 20° BTDC, RPM: 1500.


7.2.9 Variation of Volumetric Efficiency with Brake Power, Fuel: LPG, SA: 20° BTDC, RPM: 1500.


7.2.11 Variation of Mechanical Efficiency with Brake Power, Fuel: LPG, SA: 20° BTDC, RPM: 1500.


7.2.14 Variation of Brake Thermal Efficiency and Brake Specific Fuel

7.2.15 Variation of Brake Power with Equivalence Ratio, Fuel: LPG, SA: 20º BTDC, RPM: 1500.


7.2.32 Variation of Brake Thermal Efficiency and Brake Specific Fuel Consumption with Brake Power for LPG fuel, SA: 30º BTDC, RPM: 2000.


7.2.34 Comparative analysis of Variation trends of Brake Specific Fuel Consumption with Brake Power for SA: 20º, 25º & 30º BTDC,
LIST OF FIGURES


7.3.1 Variation of Brake Thermal Efficiency with Brake Power, Fuel: CNG, SA: 20º BTDC, RPM: 1500.

7.3.2 Variation of Brake Specific Fuel Consumption with Brake Power, Fuel: CNG, SA: 20º BTDC, RPM: 1500.


7.3.5 Variation of Brake Thermal Efficiency and Brake Specific Fuel Consumption with Equivalence Ratio, Fuel: CNG, SA: 20º BTDC, RPM: 1500.


7.3.7 Variation of Indicated Thermal Efficiency with Indicated Power, Fuel: CNG, SA: 20º BTDC, RPM: 1500.

7.3.8 Variation of Fuel Consumption with Brake Power, Fuel: CNG, SA: 20º BTDC, RPM: 1500.


7.3.12 Variation of Mechanical Efficiency with Brake Power, Fuel: CNG, SA: 20º BTDC, RPM: 1500.


7.3.16 Variation of Brake Thermal Efficiency and Brake Specific Fuel Consumption with Equivalence Ratio, Fuel: CNG, SA: 20º BTDC, RPM: 1500.
LIST OF FIGURES

7.3.31 Variation of Brake Thermal Efficiency and Brake Specific Fuel Consumption with Brake Power for CNG fuel, SA: 30° BTDC, RPM: 2000.  
7.3.36 Comparative analysis of Variation trends of Brake Power with...
LIST OF FIGURES

7.4.3 Comparative analysis of Variation trends of Fuel Consumption with Brake Power for Gasoline, LPG and CNG fuel, SA: 20º BTDC, RPM: 2000.
7.4.14 Comparative analysis of Variation trends of Brake Specific Fuel Consumption with Equivalence Ratio for Gasoline, LPG and CNG,
LIST OF FIGURES

7.4.15 Comparative analysis of Variation trends of Brake Thermal Efficiency with Brake Power for Gasoline, LPG and CNG, SA: 25º BTDC, RPM: 2000. 236

7.4.16 Comparative analysis of Variation trends of Brake Specific Fuel Consumption with Brake Power for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 236

7.4.17 Comparative analysis of Variation trends of Fuel Consumption with Brake Power for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 236

7.4.18 Comparative analysis of Variation trends of Air-Fuel Ratio with Brake Power for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 237

7.4.19 Comparative analysis of Variation trends of Brake Power with Equivalence Ratio for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 237

7.4.20 Comparative analysis of Variation trends of Brake Thermal Efficiency with Equivalence Ratio for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 238

7.4.21 Comparative analysis of Variation trends of Brake Specific Fuel Consumption with Equivalence Ratio for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 238

7.5.1 Comparative analysis of Variation trends of Fuel Cost with Brake Power for Gasoline, LPG and CNG, SA: 20º BTDC, RPM: 2000. 239

7.5.2 Comparative analysis of Variation trends of Fuel Cost with Brake Power for Gasoline, LPG and CNG, SA: 25º BTDC, RPM: 2000. 239

7.5.3 Comparative analysis of Variation trends of Fuel Cost with Brake Power for Gasoline, LPG and CNG, SA: 30º BTDC, RPM: 2000. 240


7.6.5 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: Gasoline, SA: 20º BTDC, RPM: 2000. 243

7.6.6 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: LPG, SA: 20º BTDC, RPM: 2000. 244

7.6.7 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: Gasoline, LPG, CNG, SA: 20º BTDC, RPM: 2000. 244

7.6.8 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: Gasoline, LPG, CNG, SA: 20º BTDC, RPM: 2000. 245

7.6.9 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: Gasoline, LPG and CNG fuels, SA: 20º BTDC, RPM: 2000. 245

7.6.10 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: Gasoline, LPG and CNG fuels, SA: 20º BTDC, RPM: 2000. 246


7.6.20 Variation of Hydro Carbon with Gasoline, LPG and CNG fuels, SA: 25º BTDC, RPM: 2000. 250

7.6.21 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: Gasoline, SA: 30º BTDC, RPM: 2000. 251

7.6.22 Variation of Hydro Carbon with Brake Power, Fuel: Gasoline, SA: 30º BTDC, RPM: 2000. 251

7.6.23 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: LPG, SA: 30º BTDC, RPM: 2000. 252

7.6.24 Variation of Hydro Carbon with Brake Power, Fuel: LPG, SA: 30º BTDC, RPM: 2000. 252

7.6.25 Variation of Carbon Monoxide and Carbon Dioxide with Brake Power, Fuel: CNG, SA: 30º BTDC, RPM: 2000. 253

7.6.26 Variation of Hydro Carbon with Brake Power, Fuel: CNG, SA: 30º BTDC, RPM: 2000. 253

7.6.27 Variation of Carbon Monoxide with Brake Power, Fuel: Gasoline, LPG, CNG, SA: 30º BTDC, RPM: 2000. 254

7.6.28 Variation of Hydro Carbon with Brake Power, Fuel: Gasoline, LPG, CNG, SA: 30º BTDC, RPM: 2000. 254

7.6.29 Variation of Carbon Monoxide with Gasoline, LPG and CNG fuels, SA: 30º BTDC, RPM: 2000. 255

7.6.30 Variation of Hydro Carbon with Gasoline, LPG and CNG fuels, SA: 30º BTDC, RPM: 2000. 255