List of Figures

1.1 Evolution of FDDC Systems...04

2.1 Repeat unit representation
 a. one RU of Plain Weave
 b. Construction of four RUs for plain weave
 c. 2-D Construction Representation of Fig 2.1 b
 d. 2-D Construction Representation of 2/2 Twill Weave.................27

2.2 Basic Plain Weave
 a. Simple Plain Weave Geometry
 b. Interlacing of Warp and Weft in Plain Weave
 c. Equal Bending of Warp
 d. Equal Bending of Weft Threads ...28

2.3 Resolution Cell with Neighbors at Different Angle to Central Pixel P.....50

2.4 Example of Image Sub Matrix...51

2.5 Co-occurrence matrix
 a. Definition of CM
 b. GLCM at 0° and d=1..51

2.6 Normal/ Defective Fabric and Their Spectrum
 a. Spectrum of Defect Free Image
 b. Spectrum of Barre Defect Image...60

2.7 Modeling of the Fabric Defects in FT
 a. Missing end
List of Figures

b. Missing pick
 c. Broken pick
d. Oily Fabric

2.8
 a. Spectrum of Simulated Plain Fabric
 b. 1-D Frequency Spectrum in Fill Direction
 c. 1-D Frequency Spectrum in Warp Direction

2.9
 a. Fill direction Frequency Spectrum
 b. Warp Direction Frequency Spectrum

2.10
 a. Different Zonal Filter Masks of Different Shapes such as
 Rectangle in Different Zones, Sectored Slit,
 Ring Mask and Circular Mask
 b. Spectrum of Rectangular and Circular Slits in Fourier
 Domain

2.11
 Radial and Angle Representation of Fourier spectrum

2.12
 Figure to Assist Decision on x, y axis in Power Spectrum Image

2.13
 Division of Power Spectrum Rings for Finding Energy Statistics

2.14
 a. Graph showing the Network Error for Training and
 Validation of Data Set
 b. Neural Network Error vs. Weight Graph with
 Local and Global Minima

3.1
 Work Flow Organization

3.2
 Work Flow Part-I

3.3
 Imaging System used for Grey Fabric Defect Detection

3.4
 Standard Ring for Image Size Calibration
List of Figures

3.5 Plain Weave Sample Images of S₁ class
 a: Normal b:Warp Break c:Looseweft d: Coarse-weft………………… 104
3.6.1 Plain Weave Sample Images of S₂ Class
 a: Normal b: Double Pick c: Loose-weft…………………………… 105
3.6.2 Plain Weave S₂ Class Loose-weft Defect Images with
 Different Intensities……………………………………………… 105
3.7 Plain Weave Sample Images of S₃ Class
 a. Normal b: Double Pick c. Thick place…………………………… 105
3.8.1 Twill Weave Sample Images of S₁ Class
 a: Normal b: Loose-weft c: Stitch………………………………… 106
3.8.2 Twill Weave Sample Images of S₂ Class
 a: Normal b:Loose-weft-1 c: Loose-weft-2……………………… 110
3.9 Flow Chart for Morphological Approach …………………… 111
3.10 Twill Fabric Sample Gray Images
 a:Normal(N) b:S₁ Stitch(ST-F) c:S₂ Loose-weft(LW-F)………… 111
3.11 Result Images obtained after Sequence of Morphological Operations
 Applied on Twill Grey Samples Depicted Along Column…………… 112
3.12 Modified Flow chart for Morphological Approach………………… 116
3.13 Results of Sequence of Morphological Operations Applied on plain
 Grey Fabric Samples Depicted along Column
 a. With Image Filling Operation Added in Sequence……………… 117
 b. Without Image Filling Operation……………………………… 117
3.14 Flow Chart for Correlation Approach (CA)……………………… 122
3.15 Application of Correlation Approach on
 Plain Weave Pattern Defects……………………………………… 124
3.16 Application of Correlation Approach on Plain Weave Pattern Defects
 a: Multiple Warp and Weft break Defect b, e:Templates
 c, f : Correlation Image for Warp and Weft-wise Defect Part……… 125
3.17 Application of Correlation Approach on
List of Figures

Twill Weave Pattern Defects ... 126
3.18 Flow Chart for Hybrid Approach ... 128
3.19 Results of MA and CA and Hybrid CA+MA
 Approach applied on Plain Weave (R₁, R₂, R₃, R₄, R₅)
 and on Twill Weave (R₆) ... 130

4.1 Work Flow Part-II .. 138
4.2 Flow Chart of DCSFPSS .. 143
4.3 Pattern Classification Tree ... 144
4.4 Simulated Patterns and their Fourier Spectrum
 a to e: Images of Horizontal Stripes of Different Stripe Widths,
 f to j: Corresponding Fourier Power Spectrum Images 145
4.5 Illustration of Zero Padding for Images in 4.4.a to e:
 a to d: Fourier Spectrum and e to j: FPS ... 146
4.6 Illustration of Zero Padding for Vertical Stripes:
 a to e: Fourier Spectrum
 f to j: Fourier Spectrum of Zero Padded Image
 k to o: FPS of Zero Padded Image .. 147
4.7 Diagonal Stripes a:1B/1W, b:2B/1W,
 c,d: Fourier Spectrum of Image without ZP
 e, f: Fourier Spectrum of Image with ZP ... 148
4.8 Checks Pattern and its Power Spectrum
 a. 1x1 Check Pattern of size 16x16
 b. 1x1 Check Pattern of size 128x128
 c. 4x4 Check Pattern of size 128x128
 d. D to f: FPS of Images a to c with Zero Padding 150
4.9 Checks pattern-a: Huck-buck e: Simple Checks
 b, f: PSWOZP, c, g: PSWZP, d, h: Log PSWZP 150
4.10 Ideal and Texcard Generated 4x8 Checks Images
List of Figures

a. Ideal Checks
b. Texcard Generated Checks
c. Checks with Noise
d. d, e, f: FPS Corresponding to a, b, c……………………………………151

4.11 Plain Fabric Pattern.
 a. Simulated(128x128)
 b. Real (128x128); c: Real (512x512)
 d to f: Power Spectrum for Images without ZP
 g to i: Power Spectrum of Images with ZP and Thresholding for a to c…………………………………………………………………………………………………153

4.12 Twill Fabric Pattern. a:2/2 Simulated, b:2/1 Simulated, c:2/1Real
 d, e, f: Power Spectrum of Image without ZP
 g, h, i: Power Spectrum of Image with ZP and Thresholding………………154

4.13 FPS Sum Plots for FPS of Figure 4. 8. a, b.
 a: u Direction; b: v Direction,
 c, d: Power Spectrum Mesh Plot for Figure 4.8. d and e………………155

4.14 a. Image of Normal Plain Weave Sample
 b. FPS in u Direction without DC Suppression.
 c. FPS in v Direction without DC Suppression…………………………157

4.15 FPS Sum Plots for Plain Weave Pattern of Figures 4.11 a, b, c
 a, b, c: Plot in u Direction; d, e, f: Plot in v Direction………………158

4.16 Plain Weave Pattern
 a. Double pick Defect Image
 b. Magnified Image in Figure 4.16. a
 c. Superimposed Marginal Plots in u Direction for Figures a and b
 d. Superimposed Marginal Plots in v Direction for Figures a and b……159

4.17 FPS Sum Plot for Twill Weave Pattern in Figure 4.12 a to c
 a to c: Plot in u Direction, d to f: Plot in v Direction………………..161

4.18 Tree showing use of Novel DCSFPSS Algorithm……………………167
List of Figures

4.19 Plain and Twill Weave Structure
 a. Plain Weave Geometry
 b. Plain Weave Cloth Cross Section
 c. Twill Weave Cloth Cross Section169

4.20 DCSFPSS of Normal Twill Grey Sample
 a. In u Direction
 b. In v Direction...171

4.21 Flow chart of DCSFPSSMA..172

4.22 a. One Repeat Unit of Fabric Pattern Represented in Terms of Diameter
 b. Ideal Visible RE of Twill Pattern with all Dimensions in d/pixels
 c. Thresholded Correlated REs for S\textsubscript{1} Class Normal Fabric Image
 i. Observed Minimum Area of RE
 ii. Observed Maximum Area of RE.................................174

4.23 3-D Representation of Repeat Element and Vision Area in
 Terms of Radius of Sphere and Corresponding Pixels..............175

4.24 Result Images of DCSFPSSMA Algorithm Applied on Grey
 Twill Fabric C\textsubscript{1}: Normal C\textsubscript{2}: Stitch C\textsubscript{2}: Loose-weft.................176

4.25 Blob Analysis
 a. S\textsubscript{1} Stitch with Defect Area :0.69 mm2
 b. S\textsubscript{2} Loose-weft with Defect Area: 14.77 mm2
 (Smallest of Defect Area Detected 0.48 mm2).................177

4.26 DCSFPSS Plot of Grey Normal Plain Sample of S\textsubscript{3} Class.............183

4.27 Flow chart of TA for Plain weave GFDD185

4.28 Result Images of TA Application on Grey Plain Fabric Normal
 and Defective Samples..187

4.29 Flow Chart of TA
 a. Flow Chart of TA for Twill Weave Fabric GFDD192
 b. Flow Chart of TA for Finding Defect Region
 From Twill Defect Sample..193
List of Figures

4.30 Result Images of TA Applied on S2 Class Twill Normal Sample……194
4.31 Result Images of TA applied to S2 Class Twill

Loose-weft Defect Sample..195

5.1 Work Flow Part-III..205
5.2 Preprocessed Plain Normal and Defective Fabric Samples Images

(S1, S2 and S3 Class)

a: S1-Normal, b: S1-Warpbreak, c:S1-Looseweft

d: S2-Normal, e:S2-Doublepick, f,g:S2-Looseweft

h: S3-Normal, i:S3-Thickplace, j:Doublepick.................................207

5.3 DCSFPS of Fabric Defects in the Fourier Domain for S1 Class Samples

a. Normal, b. Warp break, c. Loose-weft.................................208

5.4 DCSFPSS Plots of Various Fabric Defects for S1 Class Sample

in u (a,c) and v (b, d) Direction

a, b: Normal and Warp break, c, d: Normal and Loose-weft.............210

5.5 DCSFPS of Fabric Defects in the Fourier Domain for S2 Class Sample

a. Normal b. Double pick, c. Loose-weft.................................211

5.6 DCSFPSS Plots of Various Fabric Defects for S2 Class Sample

in u(a, c) and v (b, d) Direction:

a, b: Normal and Double-pick ...212

c, d: Normal and Loose-weft . Loose-weft............................212

5.7 DCSFPS of Fabric Defects in the Fourier domain for S3 Class Sample

5.8 Marginal Plots of Various Fabric Defects for S3 Class Sample in

u (a, c) and v (b, d) Direction:

a, b: Normal and Double-pick

c, d: Normal and Thick-place..214

5.9 Neural Network Configuration for Defect Classification

of Plain Weave Fabric Samples of S1, S2 and S3 Classes...............221

5.10 Training, Verification and Testing Curves for Various Plain
List of Figures

Fabric Samples of Different Classes: a: S₁, b: S₂, c: S₃....................228

5.11 Preprocessed Twill Normal and Defective Fabric Image Samples of Various Class
 a: S₁-Normal, b: S₁-Looseweft
 c: S₁-Stitch d:S₂-Normal,e:S₂-Stitch..............................233

5.12 DCSFPS of S₁ Class Normal Sample..................................234

5.13 DCSFPS of Fabric Defects for Samples of Class S₁
 a. Loose-weft b. Stitch..234

5.14 Peaks of DCSFPSS in u and v Direction for Normal Sample
 of Class S₁
 a:u Direction, b: v Direction...235

5.15 DCSFPSS Plots of Normal and Various Fabric Defect Samples
 of Class S₁ in u (a, c) and v(b, d) Direction:
 a, b: Normal and Loose-weft, c, d: Normal and Stitch...........236

5.16 Training, Verification and Testing Curves for Samples of S₁ Class
 Twill Fabric with NN Configuration 27: 40:3, MSE of 0.01
 and Gradient Value of 1E-10...245

5.17 Training, Verification and Testing Curves of Samples of S₂
 Twill Fabric Class with NN Configuration for
 MSE of 0.001 and Gradient of 1E-10..............................247

5.18 Training, Verification and Testing Curves for Samples of
 Mixed (S₁+S₂) Twill Fabric Class..................................250

6.1 Flow Chart for GFDDC System Integration..........................264

7.1 Work Flow Organization ...271

7.2 Block Schematic of Research Work Accomplished...............281