APPENDIX 1

A1.1 Photograph on overview of testing laboratory

A1.2 Photograph of test setup
A1.3 Photograph of the impeller

A1. 4 Photograph of the bowl
A1.5 Photograph pump outlet of the front view

A1.6 Photograph pump outlet of the top view
A1.7 Photograph pump inlet of the front view

A1.8 Photograph pump inlet of the top view
APPENDIX 2

HARI INDUSTRIES, COIMBATORE – 06.

SUBMERSIBLE PUMPSET PERFORMANCE TEST REPORT AS PER IS 8034: 2002

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Frequency (HZ)</th>
<th>Pump Speed (rpm)</th>
<th>Delivery Head (m)</th>
<th>V.H (m)</th>
<th>Total Head (m)</th>
<th>Flow meter Reading</th>
<th>Discharge (lps)</th>
<th>Voltage (V)</th>
<th>Current (A)</th>
<th>Motor Input (kW)</th>
<th>Discharge (lps)</th>
<th>Total Head (m)</th>
<th>Motor Input (kW)</th>
<th>Pump Output (kW)</th>
<th>Overall Eff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.1</td>
<td>2880</td>
<td>61</td>
<td>0</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>415</td>
<td>9.43</td>
<td>5.1</td>
<td>0</td>
<td>65.33</td>
<td>5.449</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>49.1</td>
<td>2880</td>
<td>50</td>
<td>0.03</td>
<td>52.03</td>
<td>2.72</td>
<td>2.72</td>
<td>415</td>
<td>10.45</td>
<td>5.72</td>
<td>2.77</td>
<td>53.95</td>
<td>6.040</td>
<td>1.465</td>
<td>24.26</td>
</tr>
<tr>
<td>3</td>
<td>49.1</td>
<td>2880</td>
<td>40</td>
<td>0.18</td>
<td>42.18</td>
<td>6.23</td>
<td>6.23</td>
<td>415</td>
<td>10.56</td>
<td>5.84</td>
<td>6.34</td>
<td>43.74</td>
<td>6.167</td>
<td>2.719</td>
<td>44.09</td>
</tr>
<tr>
<td>4</td>
<td>49.1</td>
<td>2880</td>
<td>30</td>
<td>0.29</td>
<td>32.29</td>
<td>7.67</td>
<td>7.67</td>
<td>415</td>
<td>10.97</td>
<td>5.6</td>
<td>8.01</td>
<td>33.48</td>
<td>5.914</td>
<td>2.629</td>
<td>44.45</td>
</tr>
<tr>
<td>5</td>
<td>49.1</td>
<td>2880</td>
<td>20</td>
<td>0.4</td>
<td>22.4</td>
<td>9.26</td>
<td>9.26</td>
<td>415</td>
<td>11.33</td>
<td>5.5</td>
<td>9.43</td>
<td>23.23</td>
<td>5.808</td>
<td>2.148</td>
<td>36.98</td>
</tr>
<tr>
<td>6</td>
<td>49.1</td>
<td>2880</td>
<td>10</td>
<td>0.5</td>
<td>12.5</td>
<td>10.37</td>
<td>10.37</td>
<td>415</td>
<td>12.32</td>
<td>5.1</td>
<td>10.56</td>
<td>12.96</td>
<td>5.386</td>
<td>1.342</td>
<td>24.92</td>
</tr>
</tbody>
</table>

Hydrostatic Pressure Test
1) 1.5 times shut-off Pressure = 9.15 kg/cm²
Casing withstood a pressure of 91.50 m of water

Date: 30.01.2010
Test by [Signature]
Approved by [Signature]

A2.1 Company data of the pump
APPENDIX 3

CFD STEPS

1. Pre processing

A3.1 Importing the CAD model into ANSA tool
A3.2 Checking the geometry topology in ANSA

A3.3 Setting the part names in ANSA
A3.4 Checking the part names in ANSA

A3.5 Stages of impellers in ANSA
A3.6 Setting the MRF surfaces for impellers in ANSA

A3.7 Setting surface mesh parameters in ANSA
A3.8 Choosing best method in ANSA

A3.9 Setting surface mesh quality in ANSA
A3.10 Surface mesh with preferred quality

A3.11 Setting the volume mesh parameters in T-GRID
A3.12 MRF fluid zones

A3.13 Quality checking (equiangle deviation) in T-GRID
A3.14 Quality checking (equilateral deviation) in T-GRID

A3.15 Importing volume mesh in Fluent
A3.16 Scaling the geometry in fluent

A3.17 Selecting turbulence model and non-equilibrium wall functions
A3.18 Selecting material properties in fluent

A3.19 Setting the stationary fluid zone
A3.20 Setting the moving fluid zone (MRF technique)

A3.21 Setting inlet boundary condition
A3.22 Setting outlet boundary condition

A3.23 Setting moving wall boundary condition
A3.24 Creating the surface monitors

A3.25 Convergence
APPENDIX 4

SUMMARY OF CFD PROCEDURE

Fluent
Version: 3d, dp, pbns, rke (3d, double precision, pressure-based, realizable k-epsilon)
Release: 14.5.0
Title:

Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>3D</td>
</tr>
<tr>
<td>Time</td>
<td>Steady</td>
</tr>
<tr>
<td>Viscous</td>
<td>Realizable k-epsilon turbulence model</td>
</tr>
<tr>
<td>Wall Treatment</td>
<td>Standard Wall Functions</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>Disabled</td>
</tr>
<tr>
<td>Solidification and Melting</td>
<td>Disabled</td>
</tr>
<tr>
<td>Species</td>
<td>Disabled</td>
</tr>
<tr>
<td>Coupled Dispersed Phase</td>
<td>Disabled</td>
</tr>
<tr>
<td>NOx Pollutants</td>
<td>Disabled</td>
</tr>
<tr>
<td>SOx Pollutants</td>
<td>Disabled</td>
</tr>
<tr>
<td>Soot</td>
<td>Disabled</td>
</tr>
<tr>
<td>Mercury Pollutants</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Material Properties

Material: water-liquid (fluid)

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Method</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>constant</td>
<td>998.20001</td>
</tr>
<tr>
<td>Cp (Specific Heat)</td>
<td>j/kg-k</td>
<td>constant</td>
<td>4182</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>W/m-k</td>
<td>constant</td>
<td>0.6</td>
</tr>
<tr>
<td>Viscosity</td>
<td>kg/m-s</td>
<td>constant</td>
<td>0.001003</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>kg/kgmol</td>
<td>constant</td>
<td>18.0152</td>
</tr>
<tr>
<td>Thermal Expansion Coefficient</td>
<td>1/k</td>
<td>constant</td>
<td>0</td>
</tr>
<tr>
<td>Speed of Sound</td>
<td>m/s</td>
<td>none</td>
<td>#f</td>
</tr>
</tbody>
</table>

Material: aluminum (solid)

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Method</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>constant</td>
<td>2719</td>
</tr>
<tr>
<td>Cp (Specific Heat)</td>
<td>j/kg-k</td>
<td>constant</td>
<td>871</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>W/m-k</td>
<td>constant</td>
<td>202.4</td>
</tr>
</tbody>
</table>
Cell Zone Conditions

Zones

<table>
<thead>
<tr>
<th>name</th>
<th>id</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrf-fluid-2</td>
<td>11</td>
<td>fluid</td>
</tr>
<tr>
<td>mrf-fluid-6</td>
<td>13</td>
<td>fluid</td>
</tr>
<tr>
<td>mrf-fluid-3</td>
<td>14</td>
<td>fluid</td>
</tr>
<tr>
<td>mrf-fluid-1</td>
<td>17</td>
<td>fluid</td>
</tr>
<tr>
<td>mrf-fluid-4</td>
<td>23</td>
<td>fluid</td>
</tr>
<tr>
<td>mrf-fluid-5</td>
<td>24</td>
<td>fluid</td>
</tr>
<tr>
<td>stationary-fluid</td>
<td>144</td>
<td>fluid</td>
</tr>
</tbody>
</table>

Setup Conditions

mrf-fluid-2

Condition Value

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Name</th>
<th>Specify source terms?</th>
<th>Source Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>water-liquid</td>
<td></td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specify fixed values?</th>
<th>Local Coordinate System for Fixed Velocities</th>
<th>Fixed Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame Motion?</th>
<th>Relative To Cell Zone</th>
<th>Reference Frame Rotation Speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>-1</td>
<td>2880.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Frame X-Velocity Of Zone (m/s)</th>
<th>Reference Frame Y-Velocity Of Zone (m/s)</th>
<th>Reference Frame Z-Velocity Of Zone (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Frame X-Origin of Rotation-Axis (m)</th>
<th>Reference Frame Y-Origin of Rotation-Axis (m)</th>
<th>Reference Frame Z-Origin of Rotation-Axis (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.064846003</td>
<td>0.062917003</td>
<td>0.084940004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference Frame X-Component of Rotation-Axis</th>
<th>Reference Frame Y-Component of Rotation-Axis</th>
<th>Reference Frame Z-Component of Rotation-Axis</th>
<th>Reference Frame User Defined Zone Motion Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>none</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesh Motion?</th>
<th>Relative To Cell Zone</th>
<th>Moving Mesh Rotation Speed (rpm)</th>
<th>Moving Mesh X-Velocity Of Zone (m/s)</th>
<th>Moving Mesh Y-Velocity Of Zone (m/s)</th>
<th>Moving Mesh Z-Velocity Of Zone (m/s)</th>
<th>Moving Mesh X-Origin of Rotation-Axis (m)</th>
<th>Moving Mesh Y-Origin of Rotation-Axis (m)</th>
<th>Moving Mesh Z-Origin of Rotation-Axis (m)</th>
<th>Moving Mesh X-Component of Rotation-Axis</th>
<th>Moving Mesh Y-Component of Rotation-Axis</th>
<th>Moving Mesh Z-Component of Rotation-Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
Moving Mesh User Defined Zone Motion Function: none
Deactivated Thread: no
Laminar zone?: no
Set Turbulent Viscosity to zero within laminar zone?: yes
Embedded Subgrid Scale Model: 0
Momentum Spatial Discretization: 0
Cwale: 0.325
Cs: 0.1
Porous zone?: no
Conical porous zone?: no
X-Component of Direction-1 Vector: 1
Y-Component of Direction-1 Vector: 0
Z-Component of Direction-1 Vector: 0
X-Component of Direction-2 Vector: 0
Y-Component of Direction-2 Vector: 0
Z-Component of Direction-2 Vector: 1
X-Component of Cone Axis Vector: 1
Y-Component of Cone Axis Vector: 0
Z-Component of Cone Axis Vector: 0
X-Coordinate of Point on Cone Axis (m): 1
Y-Coordinate of Point on Cone Axis (m): 0
Z-Coordinate of Point on Cone Axis (m): 0
Half Angle of Cone Relative to its Axis (deg): 0
Relative Velocity Resistance Formulation?: yes
Direction-1 Viscous Resistance (1/m²): 0
Direction-2 Viscous Resistance (1/m²): 0
Direction-3 Viscous Resistance (1/m²): 0
Choose alternative formulation for inertial resistance?: no
Direction-1 Inertial Resistance (1/m): 0
Direction-2 Inertial Resistance (1/m): 0
Direction-3 Inertial Resistance (1/m): 0
C0 Coefficient for Power-Law: 0
C1 Coefficient for Power-Law: 0
Porosity: 1
Interfacial Area Density (1/m): 1
Heat Transfer Coefficient (W/m²-k): 1

mrf-fluid-6

Condition Value

Material Name: water-liquid
 Specify source terms?: no
 Source Terms: ((mass) (x-momentum) (y-momentum) (z-momentum) (k) (epsilon))
 Specify fixed values?: no
 Local Coordinate System for Fixed Velocities: no
 Fixed Values: ((x-velocity (inactive . #) (constant . 0) (profile)) (y-velocity (inactive . #) (constant . 0) (profile)) (z-velocity (inactive . #) (constant . 0) (profile)) (k (inactive . #) (constant . 0) (profile)) (epsilon (inactive . #) (constant . 0) (profile)))
 Frame Motion?: yes
 Relative To Cell Zone: -1
 Reference Frame Rotation Speed (rpm): 2880.0001
 Reference Frame X-Velocity Of Zone (m/s): 0
 Reference Frame Y-Velocity Of Zone (m/s): 0
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Frame Z-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame X-Origin of Rotation-Axis (m)</td>
<td>0.064846003</td>
</tr>
<tr>
<td>Reference Frame Y-Origin of Rotation-Axis (m)</td>
<td>0.062917003</td>
</tr>
<tr>
<td>Reference Frame Z-Origin of Rotation-Axis (m)</td>
<td>-0.44913002</td>
</tr>
<tr>
<td>Reference Frame X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Component of Rotation-Axis</td>
<td>-1</td>
</tr>
<tr>
<td>Reference Frame User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Mesh Motion?</td>
<td>no</td>
</tr>
<tr>
<td>Relative To Cell Zone</td>
<td>-1</td>
</tr>
<tr>
<td>Moving Mesh Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Component of Rotation-Axis</td>
<td>1</td>
</tr>
<tr>
<td>Moving Mesh User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Deactivated Thread</td>
<td>no</td>
</tr>
<tr>
<td>Laminar zone?</td>
<td>no</td>
</tr>
<tr>
<td>Set Turbulent Viscosity to zero within laminar zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Embedded Subgrid-Scale Model</td>
<td>0</td>
</tr>
<tr>
<td>Momentum Spatial Discretization</td>
<td>0</td>
</tr>
<tr>
<td>Cwale</td>
<td>0.325</td>
</tr>
<tr>
<td>Cs</td>
<td>0.1</td>
</tr>
<tr>
<td>Porous zone?</td>
<td>no</td>
</tr>
<tr>
<td>Conical porous zone?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Direction-1 Vector</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Direction-1 Vector</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Direction-1 Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Direction-2 Vector</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Direction-2 Vector</td>
<td>1</td>
</tr>
<tr>
<td>Z-Component of Direction-2 Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Coordiniate of Point on Cone Axis (m)</td>
<td>1</td>
</tr>
<tr>
<td>Y-Coordiniate of Point on Cone Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Coordiniate of Point on Cone Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Half Angle of Cone Relative to its Axis (deg)</td>
<td>0</td>
</tr>
<tr>
<td>Relative Velocity Resistance Formulation?</td>
<td>yes</td>
</tr>
<tr>
<td>Direction-1 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-2 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-3 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Choose alternative formulation for inertial resistance?</td>
<td>no</td>
</tr>
<tr>
<td>Direction-1 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-2 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-3 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>CD Coefficient for Power-Law</td>
<td>0</td>
</tr>
<tr>
<td>CL Coefficient for Power-Law</td>
<td>0</td>
</tr>
<tr>
<td>Porosity</td>
<td>1</td>
</tr>
<tr>
<td>Interfacial Area Density (1/m)</td>
<td>1</td>
</tr>
<tr>
<td>Heat Transfer Coefficient (W/m²-k)</td>
<td>1</td>
</tr>
<tr>
<td>Material Name</td>
<td>water-liquid</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Specify source terms?</td>
<td>no</td>
</tr>
<tr>
<td>Source Terms</td>
<td>((mass) (x-momentum) (y-momentum) (z-momentum) (k) (epsilon))</td>
</tr>
<tr>
<td>Specify fixed values?</td>
<td>no</td>
</tr>
<tr>
<td>Fixed Values</td>
<td>((x-velocity (inactive . #) (constant . 0) (profile)) (y-velocity (inactive . #) (constant . 0) (profile)) (z-velocity (inactive . #) (constant . 0) (profile)) (epsilon (inactive . #) (constant . 0) (profile)))</td>
</tr>
<tr>
<td>Frame Motion?</td>
<td>yes</td>
</tr>
<tr>
<td>Reference Frame Rotation Speed (rpm)</td>
<td>2880.0001</td>
</tr>
<tr>
<td>Reference Frame X-velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame X-Origin of Rotation-Axis (m)</td>
<td>0.064846003</td>
</tr>
<tr>
<td>Reference Frame Y-Origin of Rotation-Axis (m)</td>
<td>0.062917003</td>
</tr>
<tr>
<td>Reference Frame Z-Origin of Rotation-Axis (m)</td>
<td>-0.17600001</td>
</tr>
<tr>
<td>Reference Frame X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Component of Rotation-Axis</td>
<td>-1</td>
</tr>
<tr>
<td>Reference Frame User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Mesh Motion?</td>
<td>no</td>
</tr>
<tr>
<td>Reference Frame Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Component of Rotation-Axis</td>
<td>1</td>
</tr>
<tr>
<td>Moving Mesh User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Deactivated Thread</td>
<td>no</td>
</tr>
<tr>
<td>Laminar zone?</td>
<td>no</td>
</tr>
<tr>
<td>Set Turbulent Viscosity to zero within laminar zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Embedded Subgrid-SCALE Model</td>
<td>0</td>
</tr>
<tr>
<td>Momentum Spatial Discretization</td>
<td>Cwale 0.325</td>
</tr>
<tr>
<td>Cs</td>
<td>0.1</td>
</tr>
<tr>
<td>Porous zone?</td>
<td>no</td>
</tr>
<tr>
<td>Conical porous zone?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Direction-1 Vector</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Direction-1 Vector</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Direction-1 Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Direction-2 Vector</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Direction-2 Vector</td>
<td>1</td>
</tr>
<tr>
<td>Z-Component of Direction-2 Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Cone Axis Vector</td>
<td>1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Y-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Coordinate of Point on Cone Axis (m)</td>
<td>1</td>
</tr>
<tr>
<td>Y-Coordinate of Point on Cone Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Coordinate of Point on Cone Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Half Angle of Cone Relative to its Axis (deg)</td>
<td>0</td>
</tr>
<tr>
<td>Relative Velocity Resistance Formulation?</td>
<td>yes</td>
</tr>
<tr>
<td>Direction-1 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-2 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-3 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Choose alternative formulation for inertial resistance?</td>
<td>no</td>
</tr>
<tr>
<td>Direction-1 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-2 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>Direction-3 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>C0 Coefficient for Power-Law</td>
<td>0</td>
</tr>
<tr>
<td>C1 Coefficient for Power-Law</td>
<td>0</td>
</tr>
<tr>
<td>Porosity</td>
<td>1</td>
</tr>
<tr>
<td>Interfacial Area Density (1/µm)</td>
<td>1</td>
</tr>
<tr>
<td>Heat Transfer Coefficient (w/m²-k)</td>
<td>1</td>
</tr>
</tbody>
</table>

mrf-fluid1

<table>
<thead>
<tr>
<th>Condition Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>water-liquid</td>
<td></td>
</tr>
</tbody>
</table>

Specify source terms? no

Source Terms

((mass) (x-momentum) (y-momentum) (z-momentum) (k) (epsilon))

Specify fixed values? no

Local Coordinate System for Fixed Velocities

((x-velocity (inactive . #) (constant . 0) (profile)) (y-velocity (inactive . #) (constant . 0) (profile)) (z-velocity (inactive . #) (constant . 0) (profile)) (k (inactive . #) (constant . 0) (profile)) (epsilon (inactive . #) (constant . 0) (profile)))

Frame Motion? yes

Relative To Cell Zone -1

Reference Frame Rotation Speed (rpm) 2880.0001

Reference Frame X-Velocity Of Zone (m/s) 0

Reference Frame Y-Velocity Of Zone (m/s) 0

Reference Frame Z-Velocity Of Zone (m/s) 0

Reference Frame X-Origin of Rotation-Axis (m) 0.064846003

Reference Frame Y-Origin of Rotation-Axis (m) 0.062917003

Reference Frame Z-Origin of Rotation-Axis (m) 0.006090003

Reference Frame X-Component of Rotation-Axis 0

Reference Frame Y-Component of Rotation-Axis 0

Reference Frame Z-Component of Rotation-Axis -1

Reference Frame User Defined Zone Motion Function none

Mesh Motion? no

Relative To Cell Zone -1

Moving Mesh Rotation Speed (rpm) 0

Moving Mesh X-Velocity Of Zone (m/s) 0

Moving Mesh Y-Velocity Of Zone (m/s) 0

Moving Mesh Z-Velocity Of Zone (m/s) 0

Moving Mesh X-Origin of Rotation-Axis (m) 0

Moving Mesh Y-Origin of Rotation-Axis (m) 0

Moving Mesh Z-Origin of Rotation-Axis (m) 0
Moving Mesh X-Component of Rotation Axis 0
Moving Mesh Y-Component of Rotation Axis 0
Moving Mesh Z-Component of Rotation Axis 1
Moving Mesh User Defined Zone Motion Function none
Deactivated Thread no
Laminar zone? no
Set Turbulent Viscosity to zero within laminar zone? yes
Embedded Subgrid-Scale Model 0
Momentum Spatial Discretization 0
Cwale 0.325
Gs 0.1
Porous zone? no
Conical porous zone? no
X-Component of Direction 1 Vector 1
Y-Component of Direction 1 Vector 0
Z-Component of Direction 1 Vector 0
X-Component of Direction 2 Vector 0
Y-Component of Direction 2 Vector 1
Z-Component of Direction 2 Vector 0
X-Component of Cone Axis Vector 1
Y-Component of Cone Axis Vector 0
Z-Component of Cone Axis Vector 0
X-Coordinate of Point on Cone Axis (m) 1
Y-Coordinate of Point on Cone Axis (m) 0
Z-Coordinate of Point on Cone Axis (m) 0
Half Angle of Cone Relative to its Axis (deg) 0
Relative Viscosity Resistance Formulation? yes
Direction-1 Viscous Resistance (1/m^2) 0
Direction-2 Viscous Resistance (1/m^2) 0
Direction-3 Viscous Resistance (1/m^2) 0
Choose alternative formulation for inertial resistance? no
Direction-1 Inertial Resistance (1/m) 0
Direction-2 Inertial Resistance (1/m) 0
Direction-3 Inertial Resistance (1/m) 0
C0 Coefficient for Power-Law 0
C1 Coefficient for Power-Law 0
Porosity 1
Interfacial Area Density (1/m) 1
Heat Transfer Coefficient (W/m^2-k) 1

mrf-fluid-4

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>water-liquid</td>
</tr>
<tr>
<td>Specify source terms?</td>
<td>no</td>
</tr>
<tr>
<td>Source Terms</td>
<td>((mass) (x-momentum) (y-momentum) (z-momentum) (k) (epsilon))</td>
</tr>
<tr>
<td>Specify fixed values?</td>
<td>no</td>
</tr>
<tr>
<td>Fixed Values</td>
<td>((x-velocity (inactive . #) (constant . 0) (profile)) (y-velocity (inactive . #) (constant . 0) (profile)) (z-velocity (inactive . #) (constant . 0) (profile)) (k (inactive . #) (constant . 0) (profile)) (epsilon (inactive . #) (constant . 0) (profile)))</td>
</tr>
<tr>
<td>Frame Motion?</td>
<td>yes</td>
</tr>
<tr>
<td>Relative To Cell Zone</td>
<td>-1</td>
</tr>
</tbody>
</table>
Reference Frame Rotation Speed (rpm) 2880.0001
Reference Frame X-Velocity Of Zone (m/s) 0
Reference Frame Y-Velocity Of Zone (m/s) 0
Reference Frame Z-Velocity Of Zone (m/s) 0
Reference Frame X-Origin of Rotation-Axis (m) 0.064846003
Reference Frame Y-Origin of Rotation-Axis (m) 0.062917003
Reference Frame Z-Origin of Rotation-Axis (m) -0.26704001
Reference Frame X-Component of Rotation-Axis 0
Reference Frame Y-Component of Rotation-Axis 0
Reference Frame Z-Component of Rotation-Axis -1
Reference Frame User Defined Zone Motion Function none
Mesh Motion? no
Relative To Cell Zone -1
Moving Mesh Rotation Speed (rpm) 0
Moving Mesh X-Velocity Of Zone (m/s) 0
Moving Mesh Y-Velocity Of Zone (m/s) 0
Moving Mesh Z-Velocity Of Zone (m/s) 0
Moving Mesh X-Origin of Rotation-Axis (m) 0
Moving Mesh Y-Origin of Rotation-Axis (m) 0
Moving Mesh Z-Origin of Rotation-Axis (m) 0
Moving Mesh X-Component of Rotation-Axis 0
Moving Mesh Y-Component of Rotation-Axis 0
Moving Mesh Z-Component of Rotation-Axis 1
Moving Mesh User Defined Zone Motion Function none
Deactivated Thread no
Laminar zone? no
Set Turbulent Viscosity to zero within laminar zone? yes
Embedded Subgrid-Scale Model 0
Momentum Spatial Discretization 0
Cwale 0.325
Cs 0.1
Porous zone? no
Conical porous zone? no
X-Component of Direction-1 Vector 1
Y-Component of Direction-1 Vector 0
Z-Component of Direction-1 Vector 0
X-Component of Direction-2 Vector 0
Y-Component of Direction-2 Vector 1
Z-Component of Direction-2 Vector 0
X-Component of Cone Axis Vector 1
Y-Component of Cone Axis Vector 0
Z-Component of Cone Axis Vector 0
X-Coordinate of Point on Cone Axis (m) 1
Y-Coordinate of Point on Cone Axis (m) 0
Z-Coordinate of Point on Cone Axis (m) 0
Half Angle of Cone Relative to its Axis (deg) 0
Relative Velocity Resistance Formulation? yes
Direction-1 Viscous Resistance (1/m2) 0
Direction-2 Viscous Resistance (1/m2) 0
Direction-3 Viscous Resistance (1/m2) 0
Choose alternative formulation for inertial resistance? no
Direction-1 Inertial Resistance (1/m) 0
Direction-2 Inertial Resistance (1/m) 0
Direction-3 Inertial Resistance (1/m) 0
C0 Coefficient for Power-Law 0
C1 Coefficient for Power-Law 0
Porosity 1
Interfacial Area Density (1/m) 1
Heat Transfer Coefficient (W/m2-k) 1
<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>water-liquid</td>
</tr>
<tr>
<td>Specify source terms?</td>
<td>no</td>
</tr>
<tr>
<td>Source Terms</td>
<td>((mass) (x-momentum) (y-momentum) (z-momentum) (k) (epsilon))</td>
</tr>
<tr>
<td>Specify fixed values?</td>
<td>no</td>
</tr>
<tr>
<td>Local Coordinate System for Fixed Velocities</td>
<td>no</td>
</tr>
<tr>
<td>Fixed Values</td>
<td>((x-velocity (inactive . #) (constant . 0) (profile)) (y-velocity (inactive . #) (constant . 0) (profile)) (z-velocity (inactive . #) (constant . 0) (profile)) (epsilon (inactive . #) (constant . 0) (profile)))</td>
</tr>
<tr>
<td>Frame Motion?</td>
<td>yes</td>
</tr>
<tr>
<td>Reference Frame Rotation Speed (rpm)</td>
<td>2880.0001</td>
</tr>
<tr>
<td>Reference Frame X-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame X-Origin of Rotation-Axis (m)</td>
<td>0.064846003</td>
</tr>
<tr>
<td>Reference Frame Y-Origin of Rotation-Axis (m)</td>
<td>0.062917003</td>
</tr>
<tr>
<td>Reference Frame Z-Origin of Rotation-Axis (m)</td>
<td>-0.35809002</td>
</tr>
<tr>
<td>Reference Frame X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Component of Rotation-Axis</td>
<td>-1</td>
</tr>
<tr>
<td>Reference Frame User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Mesh Motion?</td>
<td>no</td>
</tr>
<tr>
<td>Relative To Cell Zone</td>
<td>-1</td>
</tr>
<tr>
<td>Moving Mesh Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Component of Rotation-Axis</td>
<td>1</td>
</tr>
<tr>
<td>Moving Mesh User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Deactivated Thread</td>
<td>no</td>
</tr>
<tr>
<td>Laminar zone?</td>
<td>no</td>
</tr>
<tr>
<td>Set Turbulent Viscosity to zero within laminar zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Embedded Subgrid-Scale Model</td>
<td>0</td>
</tr>
<tr>
<td>Momentum Spatial Discretization</td>
<td>0</td>
</tr>
<tr>
<td>Cwall</td>
<td>0.325</td>
</tr>
<tr>
<td>Cs</td>
<td>0.1</td>
</tr>
<tr>
<td>Porous zone?</td>
<td>no</td>
</tr>
<tr>
<td>Conical porous zone?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Direction-1 Vector</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Direction-1 Vector</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Direction-1 Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Direction-2 Vector</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Direction-2 Vector</td>
<td>1</td>
</tr>
<tr>
<td>Z-Component of Direction-2 Vector</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Cone Axis Vector</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Cone Axis Vector</td>
<td>0</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>X-Coordinate of Point on Cone Axis (m)</td>
<td>1</td>
</tr>
<tr>
<td>Y-Coordinate of Point on Cone Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Coordinate of Point on Cone Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Half Angle of Cone Relative to its Axis (deg)</td>
<td>0</td>
</tr>
<tr>
<td>Relative Velocity Resistance Formulation?</td>
<td>yes</td>
</tr>
<tr>
<td>Direction 1 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Direction 2 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Direction 3 Viscous Resistance (1/m²)</td>
<td>0</td>
</tr>
<tr>
<td>Choose alternative formulation for inertial resistance?</td>
<td>no</td>
</tr>
<tr>
<td>Direction 1 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>Direction 2 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>Direction 3 Inertial Resistance (1/m)</td>
<td>0</td>
</tr>
<tr>
<td>C0 Coefficient for Power-Law</td>
<td>0</td>
</tr>
<tr>
<td>C1 Coefficient for Power-Law</td>
<td>0</td>
</tr>
<tr>
<td>Porosity</td>
<td>1</td>
</tr>
<tr>
<td>Interfacial Area Density (1/m)</td>
<td>1</td>
</tr>
<tr>
<td>Heat Transfer Coefficient (W/m²·k)</td>
<td>1</td>
</tr>
</tbody>
</table>

stationary-fluid

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Name</td>
<td>water-liquid</td>
</tr>
<tr>
<td>Specify source terms?</td>
<td>no</td>
</tr>
<tr>
<td>Source Terms</td>
<td>((mass) (x-momentum) (y-momentum) (z-momentum) (k) (epsilon))</td>
</tr>
<tr>
<td>Specify fixed values?</td>
<td>no</td>
</tr>
<tr>
<td>Local Coordinate System for Fixed Velocities</td>
<td>no</td>
</tr>
<tr>
<td>Fixed Values</td>
<td>((x-velocity (inactive . #) (constant . 0) (profile)) (y-velocity (inactive . #) (constant . 0) (profile)) (z-velocity (inactive . #) (constant . 0) (profile)) (k (inactive . #) (constant . 0) (profile)) (epsilon (inactive . #) (constant . 0) (profile)))</td>
</tr>
<tr>
<td>Frame Motion?</td>
<td>no</td>
</tr>
<tr>
<td>Relative To Cell Zone</td>
<td>-1</td>
</tr>
<tr>
<td>Reference Frame Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame X-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame X-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Reference Frame Z-Component of Rotation-Axis</td>
<td>1</td>
</tr>
<tr>
<td>Reference Frame User Defined Zone Motion Function</td>
<td>none</td>
</tr>
<tr>
<td>Mesh Motion?</td>
<td>no</td>
</tr>
<tr>
<td>Relative To Cell Zone</td>
<td>-1</td>
</tr>
<tr>
<td>Moving Mesh Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Velocity Of Zone (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Z-Origin of Rotation-Axis (m)</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh X-Component of Rotation-Axis</td>
<td>0</td>
</tr>
<tr>
<td>Moving Mesh Y-Component of Rotation-Axis</td>
<td>0</td>
</tr>
</tbody>
</table>
Moving Mesh Z-Component of Rotation-Axis 1
Moving Mesh User Defined Zone Motion Function none
Deactivated Thread no
Laminar zone? no
Set Turbulent Viscosity to zero within laminar zone? yes
Embedded Subgrid-Scale Model 0
Momentum Spatial Discretization 0
Cwale 0.325
Cs 0.1
Porous zone? no
Conical porous zone? no
X-Component of Direction-1 Vector 1
Y-Component of Direction-1 Vector 0
Z-Component of Direction-1 Vector 0
X-Component of Direction-2 Vector 0
Y-Component of Direction-2 Vector 1
Z-Component of Direction-2 Vector 0
X-Component of Cone Axis Vector 1
Y-Component of Cone Axis Vector 0
Z-Component of Cone Axis Vector 0
X-Coordinate of Point on Cone Axis (m) 1
Y-Coordinate of Point on Cone Axis (m) 0
Z-Coordinate of Point on Cone Axis (m) 0
Half Angle of Cone Relative to its Axis (deg) 0
Relative Velocity Resistance Formulation? yes
Direction-1 Viscous Resistance (1/m²) 0
Direction-2 Viscous Resistance (1/m²) 0
Direction-3 Viscous Resistance (1/m²) 0
Choose alternative formulation for inertial resistance? no
Direction-1 Inertial Resistance (1/m) 0
Direction-2 Inertial Resistance (1/m) 0
Direction-3 Inertial Resistance (1/m) 0
CD Coefficient for Power-Law 0
CL Coefficient for Power-Law 0
Porosity 1
Interfacial Area Density (1/m) 1
Heat Transfer Coefficient (W/m²-k) 1

Boundary Conditions

Zones

<table>
<thead>
<tr>
<th>name</th>
<th>id</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>outlet-sec</td>
<td>37</td>
<td>wall</td>
</tr>
<tr>
<td>inlet-sec</td>
<td>38</td>
<td>wall</td>
</tr>
<tr>
<td>inlet-ext</td>
<td>137</td>
<td>pressure-inlet</td>
</tr>
<tr>
<td>outlet-ext</td>
<td>304</td>
<td>pressure-outlet</td>
</tr>
<tr>
<td>blocking-wall-diffuser-side</td>
<td>40</td>
<td>wall</td>
</tr>
<tr>
<td>coupling-sandbed-assembly</td>
<td>41</td>
<td>wall</td>
</tr>
<tr>
<td>s-1-stage-bowl</td>
<td>47</td>
<td>wall</td>
</tr>
<tr>
<td>s-1-stage-wall-sep</td>
<td>48</td>
<td>wall</td>
</tr>
<tr>
<td>s-2-stage-bowl</td>
<td>49</td>
<td>wall</td>
</tr>
<tr>
<td>s-3-stage-bowl</td>
<td>50</td>
<td>wall</td>
</tr>
<tr>
<td>s-4-stage-bowl</td>
<td>51</td>
<td>wall</td>
</tr>
<tr>
<td>s-5-stage-bowl</td>
<td>52</td>
<td>wall</td>
</tr>
<tr>
<td>s-6-stage-bowl</td>
<td>53</td>
<td>wall</td>
</tr>
<tr>
<td>s-1-stage-impeller</td>
<td>54</td>
<td>wall</td>
</tr>
<tr>
<td>s-2-stage-impeller</td>
<td>55</td>
<td>wall</td>
</tr>
<tr>
<td>s-3-stage-impeller</td>
<td>56</td>
<td>wall</td>
</tr>
<tr>
<td>s-4-stage-impeller</td>
<td>57</td>
<td>wall</td>
</tr>
</tbody>
</table>
s - 5 - stage - impeller
58 wall

s - 6 - stage - impeller
59 wall

shaft
61 wall

wall - new y - created
63 wall

prism side - 5
5 wall

outlet - sec: 142
142 wall

prism side - 145
145 wall

s - 1 - stage - impeller: 009
9 wall

s - 2 - stage = impeller: 012
12 wall

s - 3 - stage - impeller: 016
16 wall

s - 4 - stage - impeller: 019
19 wall

s - 5 - stage - impeller: 022
22 wall

s - 6 - stage - impeller: 035
35 wall

shaft: 066
66 wall

shaft: 067
67 wall

shaft: 068
68 wall

shaft: 069
69 wall

shaft: 070
70 wall

shaft: 071
71 wall

Setup Conditions

outlet - sec

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

inlet - sec

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
</tbody>
</table>
Define wall motion relative to adjacent cell zone? yes
Apply a rotational velocity to this wall? no

<table>
<thead>
<tr>
<th>Velocity Magnitude (m/s)</th>
<th>X-Component of Wall Translation</th>
<th>Y-Component of Wall Translation</th>
<th>Z-Component of Wall Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Define wall velocity components? no

<table>
<thead>
<tr>
<th>X-Component of Wall Translation (m/s)</th>
<th>Y-Component of Wall Translation (m/s)</th>
<th>Z-Component of Wall Translation (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Wall Roughness Height (m) 0
Wall Roughness Constant 0.5
Rotation Speed (rpm) 0

<table>
<thead>
<tr>
<th>X-Position of Rotation-Axis Origin (m)</th>
<th>Y-Position of Rotation-Axis Origin (m)</th>
<th>Z-Position of Rotation-Axis Origin (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

X-component of shear stress (pascal) 0
Y-component of shear stress (pascal) 0
Z-component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

inlet-ext

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Frame</td>
<td>0</td>
</tr>
<tr>
<td>Gauge Total Pressure (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Supersonic/Initial Gauge Pressure (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Direction Specification Method</td>
<td>1</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Flow Direction</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Flow Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Flow Direction</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Flow Direction</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Flow Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Flow Direction</td>
<td>0</td>
</tr>
<tr>
<td>X-Velocity (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-Coordinate of Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Coordinate of Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Coordinate of Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Turbulent Specification Method</td>
<td>0</td>
</tr>
<tr>
<td>Turbulent Kinetic Energy (m²/s²)</td>
<td>1</td>
</tr>
<tr>
<td>Turbulent Dissipation Rate (m²/s³)</td>
<td>1</td>
</tr>
<tr>
<td>Turbulent Intensity (%)</td>
<td>10</td>
</tr>
<tr>
<td>Turbulent Length Scale (m)</td>
<td>1</td>
</tr>
<tr>
<td>Hydraulic Diameter (m)</td>
<td>1</td>
</tr>
<tr>
<td>Turbulent Viscosity Ratio</td>
<td>10</td>
</tr>
<tr>
<td>is zone used in mixing-plane model?</td>
<td>no</td>
</tr>
</tbody>
</table>

outlet-ext

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge Pressure (pascal)</td>
<td>327979</td>
</tr>
<tr>
<td>Backflow Direction Specification Method</td>
<td>1</td>
</tr>
</tbody>
</table>
Coordinate System
- X-Component of Flow Direction: 1
- Y-Component of Flow Direction: 0
- Z-Component of Flow Direction: 0
- X-Component of Axis Direction: 0
- Y-Component of Axis Direction: 0
- Z-Component of Axis Direction: 1
- X-Coordinate of Axis Origin (m): 0
- Y-Coordinate of Axis Origin (m): 0
- Z-Coordinate of Axis Origin (m): 0

Turbulent Specification Method
- Backflow Turbulent Kinetic Energy (m^2/s^2): 1
- Backflow Turbulent Dissipation Rate (m^2/s^3): 1
- Backflow Turbulent Intensity (%): 10
- Backflow Turbulent Length Scale (m): 1
- Backflow Hydraulic Diameter (m): 1

is zone used in mixing-plane model?
- no

Radial Equilibrium Pressure Distribution
- no

Specify Average Pressure Specification
- no

Specify targeted mass flow rate
- no

Targeted mass flow (kg/s)
- 1

Upper Limit of Absolute Pressure Value (pascal)
- 5000000

Lower Limit of Absolute Pressure Value (pascal)
- 1

blocking-wall-diffuser-side

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

coupling-sandbed-assembly

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-1-stage-bowl
inlet-wall-sep

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-2-stage-bowl1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
</tbody>
</table>
Z: Component of Rotation-Axis Direction 1
X: Component of shear stress (pascal) 0
Y: Component of shear stress (pascal) 0
Z: Component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

s-5-stage-bowl

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Wall Motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X: Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y: Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z: Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X: Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y: Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z: Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X: Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y: Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z: Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X: Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y: Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z: Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X: Component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y: Component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z: Component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-6-stage-bowl

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Wall Motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X: Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y: Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z: Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X: Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y: Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z: Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X: Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
</tbody>
</table>
Y-Position of Rotation-Axis Origin (m) 0
Z-Position of Rotation-Axis Origin (m) 0
X-Component of Rotation-Axis Direction 0
Y-Component of Rotation-Axis Direction 0
Z-Component of Rotation-Axis Direction 1
X-component of shear stress (pascal) 0
Y-component of shear stress (pascal) 0
Z-component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

s-1-stage-impeller

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0.0060903083</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0.0060903083</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
</tbody>
</table>

X-Position of Rotation-Axis Origin (m) 0
Y-Position of Rotation-Axis Origin (m) 0
Z-Position of Rotation-Axis Origin (m) 0
X-Component of Rotation-Axis Direction 0
Y-Component of Rotation-Axis Direction 0
Z-Component of Rotation-Axis Direction -1
X-component of shear stress (pascal) 0
Y-component of shear stress (pascal) 0
Z-component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

s-2-stage-impeller

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0.0060903083</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0.0060903083</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
</tbody>
</table>
Wall Roughness Height (m) 0
Wall Roughness Constant 0.5
Rotation Speed (rpm) 0
X-Position of Rotation-Axis Origin (m) 0.064846053
Y-Position of Rotation-Axis Origin (m) 0.062916783
Z-Position of Rotation-Axis Origin (m) -0.084938624
X-Component of Rotation-Axis Direction 0
Y-Component of Rotation-Axis Direction 0
Z-Component of Rotation-Axis Direction -1
X-component of shear stress (pascal) 0
Y-component of shear stress (pascal) 0
Z-component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

s-3-stage-impeller

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>-0.17599971</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-4-stage-impeller

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
</tbody>
</table>
Define wall velocity components? no
X- Component of Wall Translation (m/s) 0
Y- Component of Wall Translation (m/s) 0
Z- Component of Wall Translation (m/s) 0
Wall Roughness Height (m) 0
Wall Roughness Constant 0.5
Rotation Speed (rpm) 0
X- Position of Rotation-Axis Origin (m) 0.064846053
Y- Position of Rotation-Axis Origin (m) 0.062916783
Z- Position of Rotation-Axis Origin (m) -0.26704501
X- Component of Rotation-Axis Direction 0
Y- Component of Rotation-Axis Direction 0
Z- Component of Rotation-Axis Direction -1
X-component of shear stress (pascal) 0
Y-component of shear stress (pascal) 0
Z-component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0
s- 5-stage-impeller

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X- Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y- Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z- Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X- Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y- Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z- Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X- Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y- Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z- Position of Rotation-Axis Origin (m)</td>
<td>-0.35809292</td>
</tr>
<tr>
<td>X- Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y- Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z- Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s- 6-stage-impeller

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>-0.44912752</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
<tr>
<td>wall - newly created</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
</tbody>
</table>
Wall Motion
Shear Boundary Condition
Define wall motion relative to adjacent cell zone? yes
Apply a rotational velocity to this wall? no
Velocity Magnitude (m/s) 0
X- Component of Wall Translation 1
Y- Component of Wall Translation 0
Z- Component of Wall Translation 0
Define wall velocity components? no
X- Component of Wall Translation (m/s) 0
Y- Component of Wall Translation (m/s) 0
Z- Component of Wall Translation (m/s) 0
Wall Roughness Height (m) 0
Wall Roughness Constant 0.5
Rotation Speed (rpm) 0
X- Position of Rotation-Axis Origin (m) 0
Y- Position of Rotation-Axis Origin (m) 0
Z- Position of Rotation-Axis Origin (m) 0
X- Component of Rotation-Axis Direction 0
Y- Component of Rotation-Axis Direction 0
Z- Component of Rotation-Axis Direction 1
X- component of shear stress (pascal) 0
Y- component of shear stress (pascal) 0
Z- component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X- Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y- Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z- Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X- Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y- Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z- Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X- Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y- Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z- Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X- Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y- Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z- Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X- component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y- component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z- component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

prism side-5
outlet - sec: 142
<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

prism side 145

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td></td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0.0060903083</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-1-stage-impeller: 009

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td></td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0.084938624</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
</tbody>
</table>
s-3-stage-impeller: 016

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>-0.17599971</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fsip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-4-stage-impeller: 019

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-5-stage-impeller:022

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>-0.35809292</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

s-6-stage-impeller:035

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>1</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>yes</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0.064846053</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0.062916783</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>-0.44912752</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>-1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>

shaft: 066
<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell</td>
<td>yes</td>
</tr>
<tr>
<td>zone?</td>
<td></td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
<td>no</td>
</tr>
<tr>
<td>Wall Motion</td>
<td>0</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
<td>0</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
<td>yes</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
<td>no</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Wall Translation</td>
<td>1</td>
</tr>
<tr>
<td>Y-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation</td>
<td>0</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
<td>no</td>
</tr>
<tr>
<td>X-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Wall Translation (m/s)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
<td>0</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
<td>0.5</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
<td>0</td>
</tr>
<tr>
<td>X-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Y-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>Z-Position of Rotation-Axis Origin (m)</td>
<td>0</td>
</tr>
<tr>
<td>X-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Y-Component of Rotation-Axis Direction</td>
<td>0</td>
</tr>
<tr>
<td>Z-Component of Rotation-Axis Direction</td>
<td>1</td>
</tr>
<tr>
<td>X-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Y-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Z-component of shear stress (pascal)</td>
<td>0</td>
</tr>
<tr>
<td>Fslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Eslip constant</td>
<td>0</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
<td>0</td>
</tr>
</tbody>
</table>
Z: Component of Rotation-Axis Direction 1
X: Component of shear stress (pascal) 0
Y: Component of shear stress (pascal) 0
Z: Component of shear stress (pascal) 0
Fslip constant 0
Eslip constant 0
Specularity Coefficient 0

<table>
<thead>
<tr>
<th>Shaft: 07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>Enable shell conduction?</td>
</tr>
<tr>
<td>Wall Motion</td>
</tr>
<tr>
<td>Shear Boundary Condition</td>
</tr>
<tr>
<td>Define wall motion relative to adjacent cell zone?</td>
</tr>
<tr>
<td>Apply a rotational velocity to this wall?</td>
</tr>
<tr>
<td>Velocity Magnitude (m/s)</td>
</tr>
<tr>
<td>X: Component of Wall Translation</td>
</tr>
<tr>
<td>Y: Component of Wall Translation</td>
</tr>
<tr>
<td>Z: Component of Wall Translation</td>
</tr>
<tr>
<td>Define wall velocity components?</td>
</tr>
<tr>
<td>X: Component of Wall Translation (m/s)</td>
</tr>
<tr>
<td>Y: Component of Wall Translation (m/s)</td>
</tr>
<tr>
<td>Z: Component of Wall Translation (m/s)</td>
</tr>
<tr>
<td>Wall Roughness Height (m)</td>
</tr>
<tr>
<td>Wall Roughness Constant</td>
</tr>
<tr>
<td>Rotation Speed (rpm)</td>
</tr>
<tr>
<td>X: Position of Rotation-Axis Origin (m)</td>
</tr>
<tr>
<td>Y: Position of Rotation-Axis Origin (m)</td>
</tr>
<tr>
<td>Z: Position of Rotation-Axis Origin (m)</td>
</tr>
<tr>
<td>X: Component of Rotation-Axis Direction</td>
</tr>
<tr>
<td>Y: Component of Rotation-Axis Direction</td>
</tr>
<tr>
<td>Z: Component of Rotation-Axis Direction</td>
</tr>
<tr>
<td>X: component of shear stress (pascal)</td>
</tr>
<tr>
<td>Y: component of shear stress (pascal)</td>
</tr>
<tr>
<td>Z: component of shear stress (pascal)</td>
</tr>
<tr>
<td>Fslip constant</td>
</tr>
<tr>
<td>Eslip constant</td>
</tr>
<tr>
<td>Specularity Coefficient</td>
</tr>
</tbody>
</table>

Solver Settings

Equations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>yes</td>
</tr>
<tr>
<td>Turbulence</td>
<td>yes</td>
</tr>
</tbody>
</table>

Numerics

<table>
<thead>
<tr>
<th>Numeric</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Velocity Formulation</td>
<td>yes</td>
</tr>
</tbody>
</table>

Relaxation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relaxation Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Density 1
Body Forces 1
Momentum 0.7
Turbulent Kinetic Energy 0.8
Turbulent Dissipation Rate 0.8
Turbulent Viscosity 1

Linear Solver

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Criterion</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>V-Cycle</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>X-Momentum</td>
<td>Flexible</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Y-Momentum</td>
<td>Flexible</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Z-Momentum</td>
<td>Flexible</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Turbulent Kinetic Energy</td>
<td>Flexible</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Turbulent Dissipation Rate</td>
<td>Flexible</td>
<td>0.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Pressure-Velocity Coupling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>SIMPLE</td>
</tr>
</tbody>
</table>

Discretization Scheme

<table>
<thead>
<tr>
<th>Variable</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Standard</td>
</tr>
<tr>
<td>Momentum</td>
<td>First Order Upwind</td>
</tr>
<tr>
<td>Turbulent Kinetic Energy</td>
<td>First Order Upwind</td>
</tr>
<tr>
<td>Turbulent Dissipation Rate</td>
<td>First Order Upwind</td>
</tr>
</tbody>
</table>

Solution Limits

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Absolute Pressure</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Absolute Pressure</td>
<td>5×10^10</td>
</tr>
<tr>
<td>Minimum Temperature</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Temperature</td>
<td>5000</td>
</tr>
<tr>
<td>Minimum Turb. Kinetic Energy</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>Minimum Turb. Dissipation Rate</td>
<td>1×10^{-20}</td>
</tr>
<tr>
<td>Maximum Turb. Viscosity Ratio</td>
<td>100000</td>
</tr>
</tbody>
</table>