Chapter 3

Hermitian forms and the u-invariant

Throughout this chapter k and K denote fields of characteristic not equal to 2.

Let A be a central simple K-algebra with an involution σ. Let $\varepsilon \in \{\pm 1\}$ and

$$S(\sigma, \varepsilon) = \{x \in A | \sigma(x) = \varepsilon x\}.$$

Let $r = \dim_k S(\sigma, \varepsilon)$ and $k = \{\lambda \in K | \sigma(\lambda) = \lambda\}$.

By a theorem of Mahmoudi ([8]) we have

$$u(A, \sigma, \varepsilon) \leq \frac{r(r + 1)}{2m^2[K:k]} u(k)$$

where m is the degree of A over K.

In this chapter we give a better bound for $u(A, \sigma, \varepsilon)$ when the degree of A is at most 4.

Let $K = k(\sqrt{d})$ be a quadratic field extension of k and θ a k-automorphism of K. Note that there is only one non-trivial k-automorphism K. If θ is non-trivial, then $\theta(\sqrt{d}) = -\sqrt{d}$. Let $\eta \in \{\pm 1\}$ be such that $\theta(\sqrt{d}) = \eta \sqrt{d}$. Let A_0 be a central simple algebra k with an involution τ of first kind. Let $A = A_0 \otimes K$ and $\sigma = \tau \otimes \theta$. Then A is a central simple algebra over K and σ is an involution on A. The involution σ on A is of first kind if $\eta = 1$ and second kind if $\eta = -1$.
Identify A_0 as a subalgebra of A. Then we have $A = A_0 \oplus A_0 \sqrt{d}$. Let $\pi_i : A \to A_0$ be the projections given by $\pi_1(x + y \sqrt{d}) = x$ and $\pi_2(x + y \sqrt{d}) = y$ for all $x, y \in A_0$. Let $h : V \times V \to A$ be an ε-hermitian form over (A, σ). Let $h_i = \pi_i h : V \times V \to A_0$. Then $h(x, y) = h_1(x, y) + h_2(x, y) \sqrt{d}$. We have

$$h_1(x, y) + h_2(x, y) \sqrt{d} = h(x, y) = \varepsilon \sigma(h(y, x)) = \varepsilon \tau(h_1(y, x)) + \varepsilon \eta h_2(x, y) \sqrt{d}.$$

Now it is easy to check that h_1 is an ε-hermitian form over (A_0, τ) and h_2 is an $\eta \varepsilon$-hermitian form over (A_0, τ). The assignments $h \mapsto h_1$ induces homomorphisms

$$\pi_1 : W^\varepsilon(A, \sigma) \to W^\varepsilon(A_0, \tau)$$

and

$$\pi_2 : W^\varepsilon(A, \sigma) \to W^{\eta \varepsilon}(A_0, \tau).$$

Let $h_0 : V_0 \times V_0 \to A_0$ be an ε-hermitian space over (A_0, τ). Let $V = V_0 \otimes_{A_0} A$. Then we can write $V = V_0 \oplus V_0 \sqrt{d}$. Define $h : V \times V \to A$ by

$$h(x_1 + y_1 \sqrt{d}, x_2 + y_2 \sqrt{d}) = h_0(x_1, x_2) + \eta h_0(y_1, y_2) + (\eta h_0(x_1, y_2) + h_0(y_1, x_2)) \sqrt{d}.$$

Then it can be checked that h is an ε-hermitian form over (A, σ) and the assignment $h_0 \mapsto h$ induces a homomorphism $\rho : W^\varepsilon(A_0, \tau) \to W^\varepsilon(A, \sigma)$.

Lemma 3.1 Let K/k, A_0, A, σ, τ, ρ and π_2 as above. Then $\pi_2 \circ \rho = 0$.

Proof. Let (V_0, h_0) be an ε-hermitian space over (A_0, τ). We have $\rho(h_0) = (V, h)$, where $V = V_0 \oplus \sqrt{d} V_0$ and h is as defined above. Let $W = \{x + \sqrt{d} 0 \mid x \in V_0\} \subseteq V$. Then we have

$$\pi_2 \rho(h_0)(x_1 + \sqrt{d} 0, x_2 + \sqrt{d} 0) = \pi_2(h_0(x_1, x_2) + \sqrt{d} 0) = 0.$$
Thus $W \subset W^\perp$. Let $x + \sqrt{y} \in W^\perp$. Then we have $0 = \pi_2 \rho(h_0)(z + \sqrt{d} 0, x + \sqrt{d}y) = \eta h_0(z, y)$ for all $z \in V_0$. Since h_0 is non-degenerate, we have $y = 0$. Hence $W = W^\perp$ and $\pi_2 \rho(h_0)$ is hyperbolic. \qed

Theorem 3.2 Let K/k, A_0, A, σ, τ, ρ and π_2 as above. Let (V, h) be an anisotropic ε-hermitian space over (A, σ). Suppose that $\pi_2(h) = h' \perp h$ for some hyperbolic space h. Then there exist an ε-hermitian space h_1 over (A, σ) and an ε-hermitian space h_2 over (A_0, τ) such that

$$h = h_1 \perp \rho(h_2) \quad \text{and} \quad \pi_2(h_1) = h'.$$

Proof. We prove this by induction on $\dim(h)$. If the $\dim(h) = 0$, i.e. there is no h, then we take $h_1 = h$ and we are done. Assume that $\dim(h) = m \geq 1$. In particular $\pi_2(h)$ is isotropic. Then there exists $z \in V$, $z \neq 0$, such that $\pi_2(h)(z, z) = 0$. Let $V_0 = z A_0$ be the A_0-submodule of V generated by z. Since $\pi_2(h(z, z)) = 0$, we have $h(z, z) \in A_0$. Let $a, b \in A_0$. Then $h(z a, z b) = \sigma(a) h(z, z) = \tau(a) h(z, z) b \in A_0$. Thus the restriction of h to V_0 induces an ε-hermitian form (V_0, h_0). Since h is anisotropic, the form (V_0, h_0) is anisotropic and hence non-degenerate. Since V is an A-module, we have $V_0 \oplus V_0 \sqrt{d} \subset V$ and $\rho(h_0)$ is the restriction of h to $V_0 \oplus V_0 \sqrt{d}$. Once again using the fact that h is isotropic we have $h = h'_1 \perp \rho(h_0)$. Since $\pi_2(\rho(h_0))$ is hyperbolic (by 3.1), by the Witt’s cancellation, we have $\pi_2(h'_1) = h' \perp h'$ for some hyperbolic space h'. Since $\dim(h_1) < \dim(h)$, we have $\dim(h') < \dim(h)$. Hence by induction, we have $h'_1 = h_1 \perp \rho(h'_2)$ with $\pi_2(h_1) = h'$. We have

$$h = h'_1 + \rho(h_0) = h_1 + \rho(h'_2) + \rho(h_0).$$

Let $h_2 = h'_2 + h_0$. Then h_1 and h_2 have the required properties. \qed
Corollary 3.3 Let K/k, A_0, A, σ, τ as above. With the notation as above we have the following exact sequence:

$$W^\epsilon(A_0, \tau) \xrightarrow{\rho} W^\epsilon(A, \sigma) \xrightarrow{\pi_2} W^{-\epsilon}(A_0, \tau).$$

Proof: Follows from (3.1) and (3.2).

Theorem 3.4 Let k be a field of characteristic not equal to 2 and $K = k(\sqrt{d})$ a quadratic extension of k. Let A_0 be a central simple algebra over k with an involution τ. Let $A = A_0 \otimes_k K$ and $\sigma = \tau \otimes \theta$, where θ is an automorphism of K. Let $\eta \in \{\pm 1\}$ be such that $\theta(\sqrt{d}) = \eta(\sqrt{d})$. Then we have

$$u(A, \sigma, \epsilon) \leq \frac{1}{2}u(A_0, \tau, \eta\epsilon) + u(A_0, \tau, \epsilon) + 1.$$

Proof: If $u(A_0, \tau, \epsilon)$ is not finite, then there is nothing to prove. Assume that $u(A_0, \tau, \epsilon)$ is finite.

Let h be an anisotropic ϵ-hermitian form over (A, σ). Suppose that the dimension of $h \geq \frac{1}{2}u(A_0, \tau, \eta\epsilon) + u(A_0, \tau, \epsilon) + 1$. We know that $\dim \pi_2(h) = 2 \dim(h)$. Thus $\dim \pi_2(h) \geq u(A_0, \tau, \eta\epsilon) + 2u(A_0, \tau, \epsilon) + 2$. Since any $\eta\epsilon$-hermitian space of dimension bigger that $u(A_0, \tau, \eta\epsilon)$ is isotropic, we have $\pi_2(h) = h' + h$ with $\dim h' \leq u(A_0, \tau, \eta\epsilon)$. In particular, then $\dim(h) \geq 2u(A_0, \tau, \epsilon) + 2$. By (3.2), there exist an ϵ-hermitian space h_1 over (A, σ) and an ϵ-hermitian space h_2 over (A_0, τ) such that

$$h = h_1 \perp \rho(h_2) \quad \text{and} \quad \pi_2(h_1) = h'.$$

Since $\dim(\rho(h_2)) = \dim(h_2)$, we have $\dim h_2 \geq u(A_0, \tau, \epsilon) + 1$. Hence h_2 is isotropic. Therefore $\rho(h_2)$, in particular h, is isotropic. Which is a contradiction. Hence $\dim(h) \leq \frac{1}{2}u(A_0, \tau, \eta\epsilon) + u(A_0, \tau, \epsilon)$. This proves the theorem. \qed
Theorem 3.5 Let k be a field of characteristic not equal to 2 and $K = k(\sqrt{d})$ a quadratic extension of k. Let A_0 be a central simple algebra over k with an involution τ. Let $A = A_0 \otimes_k K$ and $\sigma = \tau \otimes id$, where id is the identity map of K. Then

$$u(A, \sigma, \varepsilon) \leq \frac{3}{2} u(A_0, \tau, \varepsilon).$$

Proof. By (3.4), we have $u(A, \sigma, \varepsilon) \leq \frac{1}{2} u(A_0, \tau, \eta \varepsilon) + u(A_0, \tau + \varepsilon)$. Since $\sigma = \tau \otimes id$, we have $\eta = 1$. Therefore $u(A, \sigma, \varepsilon) \leq \frac{3}{2} u(A_0, \tau, \varepsilon)$. \qed

Theorem 3.6 Let k be a field of characteristic not equal to 2 and K/k a quadratic extension. Let A_0 be a central simple algebra over k with an involution τ. Let $A = A_0 \otimes_k K$ and $\sigma = \tau \otimes -$, where $-$ is the non-trivial automorphism of K/k. Then

$$u(A, \sigma, \varepsilon) \leq \text{minimum}\{u(A_0, \tau, \varepsilon) + \frac{1}{2} u(A_0, \tau, -\varepsilon), u(A_0, \tau, -\varepsilon) + \frac{1}{2} u(A_0, \tau, \varepsilon)\}.$$

Proof: By (3.4), we have $u(A, \sigma, \varepsilon) \leq \frac{1}{2} u(A_0, \tau, \eta \varepsilon) + u(A_0, \tau + \varepsilon)$. Since $\sigma = \tau \otimes -$, we have $\eta = -1$. Therefore $u(A, \sigma, \varepsilon) \leq \frac{1}{2} u(A_0, \tau, -\varepsilon) + u(0_0, \tau + \varepsilon)$.

Since σ is an involution of second kind we have, $u(A, \sigma, \varepsilon) = u(A, \sigma, -\varepsilon)$ (see chapter 1). Thus $u(A, \sigma, \varepsilon) \leq \text{minimum}\{u(A_0, \tau, \varepsilon) + \frac{1}{2} u(A_0, \tau, -\varepsilon), u(A_0, \tau, -\varepsilon) + \frac{1}{2} u(A_0, \tau, \varepsilon)\}$. \qed

Corollary 3.7 Let k be a field of characteristic not equal to 2 and K/k a quadratic extension. Let H be a quaternion algebra over K with an involution σ of second kind. Then $u(H, \sigma, \varepsilon) \leq \frac{7}{8} u(k)$.
Proof: Let H be a quaternion algebra over K with an involution σ of second kind. By a theorem of Albert (see [10]), there exists a quaternion subalgebra H_0 over k such that $H = H_0 \otimes_k K$ and $\sigma = \tau \otimes -$, τ is the canonical involution on H_0 and $-$ the non-trivial automorphism of K/k. By (3.6), we have $u(H, \sigma, \varepsilon) \leq u(H_0, \tau, 1) + \frac{1}{2}u(H_0, \tau, -1)$. By (1.9), we have $u(H_0, \tau, 1) \leq \frac{1}{4}u(k)$ and $u(H_0, \tau, -1) \leq \frac{5}{4}u(k)$. Hence $u(H, \sigma, \varepsilon) \leq \frac{1}{4}u(k) + \frac{1}{2} \times \frac{5}{4}u(k) = \frac{7}{8}u(k)$.

Corollary 3.8 Let k be a field of characteristic not equal to 2. Let H_1 and H_2 be two quaternion algebras over k and τ the involution given by the tensor product of canonical involutions on H_1 and H_2. Then $u(H_1 \otimes H_2, \tau, 1) \leq \frac{29}{16}u(k)$.

Proof: Since H_2 is a quaternion algebra, there exist λ and μ as in the paragraph before (1.5.1). Thus by (1.5.3), we have $u(H_1 \otimes H_2, \tau, 1) \leq \frac{1}{2}u(H_1 \otimes k(\lambda), \tau_2, -1) + u(H_1 \otimes k(\lambda), \tau_1, 1)$. Since τ_1 is an involution of second kind, by (3.7), we have $u(H_1 \otimes k(\lambda), \tau_1, \varepsilon) \leq \frac{7}{8}u(k)$. Since τ_2 is an involution of first kind, by (3.5), we have $u(H_1 \otimes k(\lambda), \tau_2, -1) \leq \frac{3}{2}u(H_1, -, -1)$. By (1.5.4), we have $u(H_1, -, -1) \leq \frac{5}{4}$. Hence $u(H_1 \otimes k(\lambda)) \leq \frac{15}{8}$. Therefore, we have $u(H_1 \otimes H_2, \tau, 1) \leq \frac{1}{2} \times \frac{15}{8}u(k) + \frac{7}{8}u(k) = \frac{29}{16}u(k)$.

Corollary 3.9 Let k be a field of characteristic not equal to 2. Let H_1 and H_2 be two quaternion algebras over k and τ the involution given by the tensor product of canonical involutions on H_1 and H_2. Then $u(H_1 \otimes H_2, \tau, -1) \leq \frac{17}{16}u(k)$.
Proof: As in the proof of (3.8), we have
\[
\begin{align*}
u(H_1 \otimes H_2, \tau, -1) & \leq \frac{1}{2}u(H_1 \otimes k(\lambda), \tau_2, 1) + u(H_1 \otimes k(\lambda), \tau_1, 1) \\
& \leq \frac{1}{2} \times \frac{7}{8}u(k(\lambda)) + \frac{7}{8}u(k) \\
& \leq \frac{7}{8} \times \frac{3}{2}u(k) + \frac{7}{8}u(k) \\
& = \frac{17}{16}u(k).
\end{align*}
\]

\[\square\]

Corollary 3.10 Let \(k\) be a field of characteristic not equal to 2. Let \(A\) be a central simple \(k\)-algebra of degree 4 with an orthogonal involution \(\tau\). Then
\[
u(A, \tau, +1) \leq \frac{29}{16}u(k)\) and \(u(A, \tau, -1) \leq \frac{17}{16}u(k)\).

Proof. Since \(A\) is a central simple \(k\)-algebra of degree 4 with an involution of first kind, we have \(A \simeq H_1 \otimes H_2\). Let \(\sigma\) be the tensor product of the canonical involutions on \(H_1\) and \(H_2\). Then \(\sigma\) is an orthogonal involution on \(H_1 \otimes H_2\) (cf. [7], 8.1.3). Hence we have \(u(A, \tau, \varepsilon) = u(A, \sigma, \varepsilon)\) (cf. §1.5). The corollary follows from (3.8) and (3.9).

Remark 3.11. Let \(H\) be a quaternion algebra over \(K\) and \(\sigma\) an involution of second kind with fixed field \(k\). Then by ([8]), we have \(u(H, \sigma, \varepsilon) \leq \frac{5}{4}u(k)\). Let \(A\) be a central simple \(k\)-algebra of degree 4, with an orthogonal involution \(\tau\). Then, by ([8]), we have \(u(A, \tau, 1) \leq \frac{55}{16}u(k)\) and \(u(A, \tau, -1) \leq \frac{21}{16}u(k)\). Hence our bounds are sharper.