Contents

ABBREVIATIONS

LIST OF ORIGINAL PUBLICATIONS

LIST OF TABLES

LIST OF PLATES

CHAPTER 1. INTRODUCTION

1.1. ORIGIN OF TEA
1.2. TEA TAXONOMY
1.3. TEA PRODUCTION
1.4. TEA CULTIVATION IN INDIA
1.5. BACKGROUND AND PURPOSE OF THE STUDY IN TEA
1.6. OBJECTIVES OF RESEARCH

CHAPTER 2. MICROPROPAGATION FROM FIELD MOTHER BUSHES AND IN VITRO GERMINATED SEEDLINGS

2.1. INTRODUCTION
2.2. REVIEW OF LITERATURE
2.3. MATERIALS AND METHODS
2.3.1. Plant materials
2.3.2. Materials for tissue culture
2.3.3. Explants used for micropropagation
2.3.4. Explant preparation
2.3.5. Inoculation and culture conditions
2.3.6. Microshoot grafting
2.3.7. Establishment and Hardening of the plantlets
2.3.8. Statistical Analysis
2.4. RESULTS
2.4.1. Micropropagation from field grown donor mother bushes
2.4.1.1. Establishment of field explants in the culture medium
2.4.1.2. Selection of basal medium
2.4.1.3. Effect of growth regulators on the shoot induction in the inoculated nodal and shoot tip explants
2.4.1.4. Shoot multiplication
2.4.1.5. Effect of auxins, cytokinins and gibberellin combinations on shoot multiplication
2.4.1.6. Effect of sucrose level in shoot proliferation
2.4.1.7. Effect of growth regulators in elongation of proliferated shoots
2.4.2. Micropropagation from in vitro germinated seedlings
2.4.2.1. Shoot induction from different explants of in vitro germinated seedlings
2.4.2.2. Effect of growth regulators on the shoot multiplication
2.4.2.3. Effect of growth regulators on shoot elongation
2.4.3. Effect of position of the explants
2.4.4. In vitro rooting of the microshoots
2.4.5. Hardening of the plantlets and transfer to soil
2.5. DISCUSSIONS
2.5.1. Establishment of field/ in vitro grown seedling explants in culture medium
2.5.2. Effect of position of the explant for multiplication
2.5.3. Selection of basal medium
2.5.4. Effect of growth regulators on shoot induction
2.5.5. Effect of growth regulators on multiple shoot proliferation from nodal and shoot tip explants
2.5.6. Effect of sucrose on shoot multiplication
2.5.7. Effect of growth regulators on shoot growth and elongation in nodal and shoot tips
2.5.8. Rooting of the explants
2.5.9. Hardening of the explants

CHAPTER 3. CYTOLOGICAL STABILITY AND GENETIC FIDELITY IN MICROPROPAGATED PLANTLETS

3.1. INTRODUCTION
3.2. REVIEW OF LITERATURE
3.3. MATERIALS AND METHODS
3.3.1. Cytological analysis
3.3.2. Genetic Fidelity Analysis
3.3.2.1. DNA isolation
3.3.2.2. Quantification and purity determination of genomic DNA by spectral analysis
3.3.2.3. Gel Electrophoresis
3.3.2.4. RAPD analysis
3.3.2.5. ISSR analysis
3.3.2.6. SSR analysis
3.3.2.7. Gel Electrophoresis of amplified fragments
3.3.3. Statistical Analysis
3.4. RESULTS
3.4.1. Cytological analysis
3.4.2. Genetic fidelity study in the micropropagated plantlets from the field mother bushes
3.4.2.1. RAPD Analysis
3.4.2.2. ISSR Analysis
3.4.2.3. SSR Analysis
3.4.3. Genetic fidelity study in the micropropagated plantlets derived from the explants of
in vitro germinated seedlings
3.4.2.1. RAPD Analysis
3.4.2.2. ISSR Analysis
3.4.2.3. SSR Analysis
3.5. DISCUSSION
3.5.1. Cytological Analysis
3.5.2. Genetic stability

CHAPTER 4. SOMATIC EMBRYOGENESIS AS AN ALTERNATIVE
SYSTEM OF PROPAGATION
4.1. INTRODUCTION
4.2. REVIEW OF LITERATURE
4.3. MATERIALS AND METHODS
4.3.1. Induction of somatic embryogenesis
4.4. RESULTS AND DISCUSSIONS
4.4.1. Establishment of a reproducible regeneration system applicable across the
germplasm base
4.4.1.1. Size of seeds and contamination
4.4.1.2. Induction of PnSE and age of seeds
4.4.1.3. Size of cotyledon and genotype
4.4.1.4. Obtaining SPnSE and its utility vis a vis primary embryos (PriSE)
4.4.1.5. Germination of somatic embryos

CHAPTER 5. COMMERCIAL FEASIBILITY OF THE
IN VITRO PROPAGATED TEA PLANTLETS
5.1. NEED FOR LOW COST ALTERNATIVES FOR TEA PROPAGATION
5.2. COMPARISON OF RATE OF PROPAGATION BY DIFFERENT METHODS
5.3. COST ECONOMICS OF THE IN VITRO PROPAGATED TEA PLANTLETS

CHAPTER 6. SCREENING OF THE THREE VARIETIES OF TEA
GERMPLASMS FOR TRANSFORMATION EFFICIENCY
FOR GENETIC IMPROVEMENT
6.1. INTRODUCTION
6.2. MATERIALS AND METHODS
6.2.1. Vectors
6.2.2. Plant Transformation
6.2.2.1. Transformation Treatments
6.2.2.2. GUS and nptII assay
6.2.2.3. DNA Isolation and PCR analysis
6.2.2.4. Southern blot analysis
6.2.2.5. Fluorescence analysis
6.2.3. RESULTS AND DISCUSSIONS
6.3.1. Agrobacterium mediated genetransfer
6.3.1.1. Interaction of factors such as bacterial strain, explants and genotype
6.3.2. Molecular analysis of embryos and plantlets
6.3.2.1. Kanamycin resistance
6.3.2.2. NPTII assays

CHAPTER 7. SUMMARY
7.1. MICROPROPAGATION
7.2. STABILITY OF MICROPROPAGATED PLANTLETS
7.3. SOMATIC EMBRYOGENESIS
7.4. COMMERCIAL FEASIBILITY OF MICROPROPAGATED PLANTLETS
7.5. GENETIC TRANSFORMATION EFFICIENCY OF THE GERMPLASMS
7.6. FUTURE PERSPECTIVES

BIBLIOGRAPHY