


References


“A study on genetic polymorphisms associated with prostate cancer risk in South Indian men”
“A study on genetic polymorphisms associated with prostate cancer risk in South Indian men”


90. Devgan SA, Henderson BE, Yu MC, Shi CY, Pike MC, Ross RK, Reichardt JK

91. Genetic variation of 3-beta hydroxysteroid dehydrogenase type II in three racial/ethnic groups: implications for prostate cancer risk. Prostate 1997;33: 9–12


102. Rebbeck TR. Molecular epidemiology of the human glutathione-S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility, Cancer Epidemiol Biomarkers Prev 1997;6:733–4


References


References


References


149. Richie JP. Anti-androgens and other hormonal therapies for prostate cancer. Urology, 1999; 54 (6ASuppl.):15-18


References
References


188. Margiotti K, Sanguolo F, De Luca A, Froio F, Pearce CL, Ricci-Barbini V et al. Evidence for an association between the SRD5A2 (type II steroid 5α-


195. Zubiaga AM, Belasco JG, Greenberg ME. The nonamer UUAUUUAUUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 1995 15: 2219–30


References


211. Shimbo M, Suzuki H, Kamiya N, Imamoto T, Komiya A, Ueda T, et al. CAG polymorphic repeat length in androgen receptor gene combined with


“A study on genetic polymorphisms associated with prostate cancer risk in South Indian men”
References


239. Cicek MS, Xin Liu, Graham Casey, Witte JS. Role of androgen metabolism genes CYP1B1, PSA/ KLK3, and CYP11a in prostate cancer risk and aggressiveness Cancer Epidemiol Biomarkers Prev 2005; 14:2173–7


242. Salinas CA, Austin MA, Ostrander EO, Stanford JL. Polymorphisms in the androgen receptor and the prostate specific antigen genes and prostate cancer risk The Prostate 2005; 9999:1- 8


References

length in the androgen receptor gene have an increased risk of prostate cancer J Hum Genet 2006;51:254–7.


260. Graham SE, Peterson JA. How similar are P450s and what can their differences teach us? Arch Biochem Biophys 1999;369:24-29.


269. Acevedo C, Opazo JL, Huidobro C, Cabezas J, Iturrieta J, Sepulveda LQ. Positive Correlation Between Single or Combined Genotypes of...
CYP1A1 and GSTM1 in Relation to Prostate Cancer in Chilean People. The Prostate 2003;57:111-17.


References


291. Srivastava DSL, Mandhani A, Mittal B, Mittal RD. Genetic polymorphism of glutathione S-transferase genes (GSTM1, GSTT1 and GSTP1) and susceptibility to prostate cancer in Northern India. BJU Int 2005;95:170–3.

292. Rebbeck TR, Walker AH, Jaffe JM, White DL, Wein AJ, Malkowicz SB. Glutathione S-transferase mu (GSTM1) and-theta (GSTT1) genotypes in the


345. Yeh CC, Sung FC, Tang R, Chieh CRC, Hsieh LL Polymorphisms of the XRCC1, XRCC3, & XPD genes, and colorectal cancer risk: a case-control study in Taiwan. BMC Cancer 2005;5:12


361. Minaguchi T, Kanamori Y, Matsushima M, Yoshikawa H, Taketani Y, Nakamura Y. No evidence of correlation between polymorphisms at codon
References


373. Prendergest NJ, Atkins MR, Schatte EC, Paulson DF, Walther PJ, p53 immunohistochemical and genetic alterations are associated at high


