CHAPTER -2

S-UNITARY MATRICES

The concept of s-unitary matrices introduced for complex square matrices. Some basic characterizations are derived in this chapter. Necessary and sufficient conditions for sum of two s-unitary matrices to be s-unitary is determined. The product of two s-unitary matrices to be s-unitary is also derived. Some equivalent conditions on s-unitary matrices are also derived [30].
2.1. CHARACTERIZATIONS OF S-UNITARY MATRICES.

The s-unitary matrix is defined and its characterizations are discussed. Characterizations of s-unitary matrices analogous to that of unitary matrices are obtained. The concept of skew s-unitary matrix is introduced and established some theorems.

Definition 2.1.1

A matrix $A \in C_{n\times n}$ is said to be s-unitary if $AA^S = A^S A = I$ [26]

i.e $AA^\theta = A^\theta A = I$ where $A^\theta = \overline{A}^S$

$AVA^*V = VA^*VA = I$

$VA^*V = A^{-1}$ or $\overline{A}^S = A^{-1}$

Example 2.1.2

$$\begin{pmatrix}
 -i & 0 \\
 \sqrt{2} & \sqrt{2} \\
 1 & i \\
 \sqrt{2} & \sqrt{2}
\end{pmatrix}$$

It can be shown that $AA^\theta = A^\theta A = I$ and hence A is s-unitary.

Example 2.1.3

$$\begin{pmatrix}
 -i & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -i
\end{pmatrix}$$

is a s-unitary matrix.

The content of the article published by Krishnamoorthy, S and Govindarasu, A in International Journal of Computational Science and Mathematics Volume 2, Number 3, 247-253 (2010) has been discussed in the context of "On secondary unitary matrices".

Theorem 2.1.4
Let $A \in C_{n \times n}$. If A is s-unitary matrix, then \overline{A} is also s-unitary matrix.

Proof: A is s-unitary matrix $\Rightarrow VA^*V = A^{-1}$
[By Definition 2.1.1]

$$V(\overline{A})^*V = V(\overline{A})^T V$$

$$= VA^*V$$

$$= VA^*V$$
[Since $V = V$]

$$= A^{-1}$$
[By Definition 2.1.1]

$$=(\overline{A})^{-1}$$

Hence \overline{A} is s-unitary.

Theorem 2.1.5

Let $A \in C_{n \times n}$. If A is s-unitary matrix, then A^T is s-unitary matrix.

Proof:

A is s-unitary matrix $\Rightarrow VA^*V = A^{-1}$
[By Definition 2.1.1]

$$(A^{-1})^T = (VA^*)^T$$

$$= V^T (A^*)^T V^T$$

$$= V(A^*)^T V$$
[Since $V^T = V$]

$$(A^T)^{-1} = V(A^*)^T V$$
Hence A^T is s-unitary matrix.

Theorem 2.1.6
Let \(A \in C_{n \times n} \). If \(A \) is s-unitary matrix, then \(A^* \) is s-unitary matrix.

Proof:

\(A \) is s-unitary matrix \(\Rightarrow VA^*V = A^{-1} \) [By Definition 2.1.1]

\[(A^{-1})^* = (VA^*V)^*\]

\[= V^* (A^*)^* V\]

\[(A^{-1})^* = V (A^*)^* V \quad \text{[Since } V^* = V \text{]}\]

\[(A^*)^{-1} = V (A^*)^* V \]

Hence \(A^* \) is s-unitary matrix.

Theorem 2.1.7

Let \(A \in C_{n \times n} \). If \(A \) is s-unitary matrix, then \(A^{-1} \) is s-unitary matrix.

Proof:

\(A \) is s-unitary matrix \(\Rightarrow A^{-1} = \overline{A}^S \) [By Definition 2.1.1]

\[(A^{-1})^{-1} = (\overline{A}^S)^{-1}\]

\[= ((A^{-1})^S)\]

\[= (A^{-1})^S\]

Therefore \((A^{-1})^{-1} = (A^{-1})^S \)

Hence \(A^{-1} \) is s-unitary matrix.

Theorem 2.1.8
Let $A \in C_{nxn}$. If A is s-unitary matrix, then iA is s-unitary matrix.

Proof:

$$A \text{ is s-unitary matrix } \Rightarrow A^{-1} = \overline{A}^S$$ \hspace{1cm} \text{[By Definition 2.1.1]}

$$iA^{-1} = i\overline{A}^S$$

$$-(iA)^{-1} = -i\overline{A}^S$$

$$(iA)^{-1} = i\overline{A}^S$$

Hence iA is s-unitary matrix.

Definition 2.1.9

A matrix $A \in C_{nxn}$ is said to be skew secondary unitary matrix if $A^{-1} = -\overline{A}^S$.

Example 2.1.10

$$A = \begin{bmatrix}
\frac{1}{\sqrt{2}} & i \\
\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{bmatrix}$$

is a skew s-unitary matrix

Theorem 2.1.11

Let $A \in C_{nxn}$. If A is skew s-unitary matrix, then iA is skew s-unitary matrix.

Proof:
\[A \text{ is skew s-unitary matrix} \Rightarrow A^{-1} = -\overline{A}^s \]

[By Definition 2.1.9]

\[iA^{-1} = -i\overline{A}^s \]

\[-(iA)^{-1} = iA^s \]

\[(iA)^{-1} = -i\overline{A}^s \]

Hence \(iA \) is skew s-unitary matrix.
2.2 SUMS AND PRODUCTS OF s-UNITARY MATRICES

In this section, necessary and sufficient conditions for sum and difference of two s-unitary matrices A and B to be s-unitary is proved. It is shown that product of two s-unitary matrices is a s-unitary matrix. Some theorems are proved relating to sums and products of s-unitary matrices.

Theorem 2.2.1

Let $A, B \in C_{n \times n}$ and A, B are s-unitary matrices and $A \overline{B}^S = B^S A$, $B \overline{A}^S = A^S B$

(i) If $A \overline{B}^S + B \overline{A}^S = -I$ then $A + B$ is s-unitary

(ii) If $A \overline{B}^S + B \overline{A}^S = I$ then $A - B$ is s-unitary

Proof:

Given A and B are s-unitary matrices.

Then $A^{-1} = \overline{A}^S$, $B^{-1} = \overline{B}^S$ [By Definition 2.1.1]

(i) We have to show $(A + B)(A + B)^S = I$

\[
(A + B)(A + B)^S = (A + B)(\overline{A}^S + \overline{B}^S)
\]

\[
= A \overline{A}^S + (A \overline{B}^S + B \overline{A}^S) + B \overline{B}^S
\]

\[
= I + (-I) + I = I
\]

Similarly we can prove $(A + B)^S (A + B) = I$

Therefore $(A + B)(A + B)^S = (A + B)^S (A + B) = I$

Hence $(A + B)$ is s-unitary.

The content of the article published by Krishnamoorthy S and Govindarasu A in *International Journal of Computational Science and Mathematics* Volume 2, Number 3, 247-253 (2010) has been discussed in the context of "On secondary unitary matrices"
(ii) We have to show \((A - B)(A - B)^s = I\)

\[
(A - B)(A - B)^s = (A - B)(\overline{A}^s - \overline{B}^s)
\]

\[
= A\overline{A}^s - A\overline{B}^s - B\overline{A}^s + B\overline{B}^s
\]

\[
= A\overline{A}^s - (A\overline{B}^s + B\overline{A}^s) + B\overline{B}^s
\]

\[
= I - (I) + I
\]

\[
= I
\]

Similarly we can prove \((A - B)^s (A - B) = I\)

Therefore \((A - B)(A - B)^s = (A - B)^s (A - B) = I\)

Hence \(A - B\) is s-unitary.

Theorem 2.2.2

Let \(A \in C_{n \times n}\). If \(A\) is s-unitary and \(V\) is a permutations matrix with units in the secondary diagonal and all other elements are zero and \(VA = AV\) then \(VA\) is unitary.

Proof:

\(A\) is s-unitary matrix \(\Rightarrow VA^*V = A^{-1}\) \hspace{1cm} [By Definition 2.1.1]

\[V(A^*V^*) = A^{-1}\] \hspace{1cm} [Since \(V^* = V\)]

\[V(VA)^* = A^{-1}\]

Premultiplying both sides by \(A\) we get

\[AV(VA)^* = AA^{-1}\]
\[(VA)(VA)^* = I\] \[\text{[Since} VA = AV] \]

Also, \[VAV^* = A^{-1}\] \[\text{[Since} V = V] \]

\[(V^*A^*)V = A^{-1}\] \[\text{[Since} V^* = V] \]

Postmultiplying both sides by \(A\) we get

\[(AV)^*(VA) = A^{-1}A\] \[\text{[Since} (AV)^* = V^*A^*] \]

\[(VA)^*(VA) = I\] \[\text{[Since} VA = AV] \]

Therefore \((VA)(VA)^* = (VA)^*(VA) = I\)

Hence \(VA\) is unitary.

Theorem 2.2.3

Let \(A \in \mathbb{C}_{nxn}\). If \(A\) is s-unitary and \(V\) is a permutation matrix with units in the secondary diagonal and all other elements are zero and \(VA = AV\) then \(AV\) is unitary.

Proof:

\(A\) is s-unitary matrix \(\Rightarrow VA^*V = A^{-1}\) \[\text{[By Definition 2.1.1]}\]

\[(V^*A^*)V = A^{-1}\] \[\text{[Since} V^* = V] \]

\[(AV)^*V = A^{-1}\] \[\text{[Since} (AV)^* = V^*A^*] \]

Post multiplying both sides by \(A\), we get

\[(AV)^*VA = A^{-1}A\]

\[(AV)^*(AV) = I\] \[\text{[Since} VA = AV] \]
Also, \(VA^*V = A^{-1} \)

\[V(A^*V^*) = A^{-1} \] \[\text{[Since } V^* = V \text{] } \]

\[V(VA)^* = A^{-1} \] \[\text{[Since } (VA)^* = A'V^* \text{] } \]

Pre multiplying both sides by \(A \), we get

\[(AV)(AV)^* = AA^{-1} = I \] \[\text{[Since } AV = VA \text{] } \]

Therefore \((AV)(AV)^* = (AV)^*(AV) = I \)

Hence \(AV \) is unitary.

Theorem 2.2.4

Let \(A, B \in C_{n \times n} \). If \(A \) and \(B \) are s-unitary matrices then \(AB \) is a s-unitary matrix.

Proof:

\(A \) is s-unitary matrix \(\Rightarrow VA^*V = A^{-1} \) \[\text{[By Definition 2.1.1] } \]

\(B \) is s-unitary matrix \(\Rightarrow VB^*V = B^{-1} \) \[\text{[By Definition 2.1.1] } \]

\[V(AB)^*V = V(B^*A^*)V \]

\[= (VB^*V)(VA^*V) \] \[\text{[Since } V^2 = I \text{] } \]

\[= B^{-1}A^{-1} \]

\[= (AB)^{-1} \]

Therefore \(V(AB)^*V = (AB)^{-1} \)

Hence \(AB \) is s-unitary matrix.
Theorem 2.2.5

Let $A \in C_{n \times n}$ and V is a permutations matrix with units in the secondary diagonal and all other elements are zero. If A is s-unitary then so are VA and AV.

Proof:

A is s-unitary matrix $\Rightarrow VA^*V = A^{-1}$

[By Definition 2.1.1]

$(VA)^{-1} = A^{-1}V$

$= VA^*VV$

[Since $A^{-1} = VA^*V$]

$(VA)^{-1} = V(VA)^*V$

[Since $(VA)^* = A^*V^*$]

Hence VA is s-unitary.

Also

$(AV)^{-1} = VA^{-1}$

$= V(VA^*)V$

$= V(V^*A^*)V$

[Since $VA^* = V^*A^*$]

Therefore $(AV)^{-1} = V(AV)^*V$

Hence AV is s-unitary.

Theorem 2.2.6

Let $A \in C_{n \times n}$ If A is s-unitary then A^n is s-unitary for all integer n.

Proof:

Case (i) $n = 0$

$A^0 = I$ is s-unitary.
Case (ii) \(n \) is a positive integer.

\[
(A^n)^{-1} = (A\ldots A)^{-1}
\]

\[
= A^{-1}A^{-1}A^{-1} \ldots A^{-1} \quad (n \text{ times})
\]

\[
= (VA^*V)(VA^*V)\ldots (VA^*V) \quad (n \text{ times})
\]

\[
\]

\[
= V(A^*A^*A^*\ldots A^*)V \quad \text{[Since } V^2 = I \text{]}
\]

\[
= V(A^*)^nV
\]

\[
(A^n)^{-1} = V(A^n)^*V.
\]

Hence \(A^n \) is s-unitary.

Case (iii): \(n \) is a negative integer.

First let us prove the theorem for \(n = -1 \).

\[
A^{-1} = VA^*V \quad \text{[By Definition 2.1.1]}
\]

Taking inverse on both sides

\[
(A^{-1})^{-1} = (VA^*V)^{-1}
\]

\[
= V(A^*)^{-1}V
\]

\[
= V(A^{-1})^*V
\]

Hence \(A^{-1} \) is s-unitary.

Let \(n \) is any negative integer.
Let \(m = -n \). Since \(\mathbf{A}^{-1} \) is s-unitary, \((\mathbf{A}^{-1})^m\) is s-unitary (m>0) by what we have proved in case (i)

\[\mathbf{A}^n = \mathbf{A}^{-m} \]

\[= (\mathbf{A}^{-1})^m \]

Hence \(\mathbf{A}^n \) is s-unitary.

Theorem 2.2.7

If \(M^n \) is the collection of all \(n \times n \) s-unitary matrices then it is a group under multiplication.

Proof:

Since then \(I_n \in M^n \), it is not empty.

If \(A, B \in M^n \) then \(AB \in M^n \).

Matrix multiplication is associative. The identity matrix \(I_n \) is s-unitary.

If \(A \in M^n \) then \(A^{-1} \in M^n \).

Hence \(M^n \) is a group under multiplication.
2.3 SOME EQUIVALENT CONDITIONS ON s-UNITARY MATRICES

In this section, equivalent conditions on s-unitary matrices are derived [30].

Theorem 2.3.1

Let $A \in C_{n \times n}$. If A is s-unitary matrix, then AA^* and A^*A are s-unitary matrices.

Proof:

$$(AA^*)^{-1} = (A^*)^{-1}A^{-1}$$

$$= (A^{-1})^*A^{-1}$$

$$= (VA^*V)(VA^*V)$$

[By Definition 2.1.1]

$$= V(A^*)^*(VV)A^*V$$

[Since $VV^* = V$]

$$= VA(VV)A^*V$$

$$= (VA^*V)$$

$$= (AA^*)^*V$$

[Since $V^* = V$]

Hence AA^* is s-unitary.

$$(A^*A)^{-1} = A^{-1}(A^*)^{-1}$$

$$= A^{-1}(A^{-1})^*$$

$$= (VA^*V)(VA^*V)^*$$

[Since $A^{-1} = VA^*V$]

The content of the article published by Krishnamoorthy S and Govindarasu A in *International Journal of Mathematical Sciences And Engineering Applications (IJMSEA)* Vol.5, No IV, 173-179(2011) has been discussed in the context of “Some equivalent conditions on s-unitary matrices”
\[(VA^*V)(AV) = (VA^*V)(VAV) = VA^*(VV)AV = VA^*AV = V(A^*A)^*V\]

Hence \(A^*A\) is s-unitary.

Theorem 2.3.2

Let \(A \in C_{n \times n}\). Any two of the following imply the other:

(i) \(A\) is s-unitary (ii) \(A\) is hermitian (iii) \(VA\) or \(AV\) is involutary.

Proof:

(i) and (ii) \(\Rightarrow\) (iii)

\[VA^*V = A^{-1}\]
[By Definition 2.1.1]

\[VAV = A^{-1} \quad (2.3.3)\]
[Since \(A\) is hermitian]

Post multiplying (2.3.3) by \(A\) we get

\[VAVA = A^{-1}A\]

\[(VA)^2 = I\]

Therefore \(VA\) is involutary.

Premultiplying (2.3.3) by \(A\) we get

\[AVA^*V = AA^{-1}\]
\[(AV)^2 = I\]

Therefore \(AV\) is involutary.

(ii) and (iii) \(\Rightarrow\) (i)

Given \(VA\) is involutary.

\[(VA)^2 = I\]

\[VAVA = I\]

\[VAV = A^{-1}\]

\[VA^*V = A^{-1}\]
\[\text{[Since } A \text{ is hermitian]}\]

Hence \(A\) is s-unitary.

Given \(AV\) is involutary

\[(AV)^2 = I\]

\[AVAV = I\]

\[VAV = A^{-1}\]

\[VA^*V = A^{-1}\]
\[\text{[Since } A \text{ is hermitian]}\]

Hence \(A\) is s-unitary.

(i) and (iii) \(\Rightarrow\) (ii)

Given \(VA\) is involutary.

\[(VA)^2 = I\]

\[VAVA = I\]

\[VAV = A^{-1}\]
\[VAV = VA^*V \]

\[A = A^* \]

Hence \(A \) is hermitian.

Theorem 2.3.4

Let \(A \in C_{nn} \). Any two of the following imply the other:

(i) \(A \) is s-unitary
(ii) \(A \) is s-hermitian
(iii) \(A \) is involutary.

Proof:

(i) and (ii) \(\Rightarrow \) (iii)

\[VA^*V = A^{-1} \]

[By Definition 2.1.1]

\[A = A^{-1} \]

[Since \(A \) is s-hermitian]

Therefore \(A^2 = I \)

Hence \(A \) is involutary.

(ii) and (iii) \(\Rightarrow \) (i)

\[A^2 = I \Rightarrow AA = I \]

\[AVA^*V = I \]

[Since \(A \) is s-hermitian]

\[VA^*V = A^{-1} \]

Hence \(A \) is s-unitary.

(iii) and (i) \(\Rightarrow \) (ii)

Given \(A \) is involutary.

\[A^2 = I \Rightarrow AA = I \]
\[A = A^{-1} \]

\[= VA^*V \] \hspace{1cm} \text{[By Definition 2.1.1]} \]

Therefore \(A = VA^*V \)

Hence \(A \) is s-hermitian.

Remark 2.3.5

For any matrix \(A \) commutes with \(V \) iff \(A^* \) commutes with \(V \)

\[VA = AV \iff (VA)^* = (AV)^* \]

\[\iff A^*V = VA^* \]

Theorem 2.3.6

Let \(A \in C_{n \times n} \). Any two of the following imply the other:

(i) \(A \) is unitary \hspace{0.5cm} (ii) \(A \) is s-unitary \hspace{0.5cm} (iii) \(AV = VA \)

Proof :

(i) and (ii) \(\Rightarrow \) (iii)

\(A \) is s-unitary \(\Rightarrow \)

\[VA^*V = A^{-1} \]

\[VA^{-1}V = A^{-1} \] \hspace{1cm} \text{[Since \(A \) is unitary]}

Taking inverse on both sides

\[(VA^{-1}V)^{-1} = (A^{-1})^{-1} \]

\[VA^*V = A \]

\[\Rightarrow AV = VA \]
(ii) and (iii) ⇒ (i)

\[A \text{ is s-unitary} \Rightarrow VA^*V = A^{-1} \]

\[VVA^* = A^{-1} \quad \text{[By Remark 2.3.5]} \]

\[A^* = A^{-1} \]

Hence \(A \) is unitary

(iii) and (i) ⇒ (ii)

\[A^* = A^{-1} \quad \text{[Since \(A \) is unitary]} \]

\[VVA^* = A^{-1} \]

\[VA^*V = A^{-1} \quad \text{[By Remark 2.3.5]} \]

Hence \(A \) is s-unitary

Remark 2.3.7

If a matrix \(A \) is nonsingular then by Cayley-Hamilton theorem we can find a polynomial \(P(t) \) such that \(A^{-1} = P(A) \).

Theorem 2.3.8

Let \(A \in \mathbb{C}^{n \times n} \). Any two of the following imply the other:

(i) \(A \) is s-unitary (ii) \(A^{-1} = P(A) \) where \(P(A) \) is a polynomial \(A \)

(iii) \(A^* = P(VAV) \)
Proof:

(i) and (ii) ⇒ (iii)

Since \(A \) is s-unitary and nonsingular, by remark (2.3.7), it is possible to find a polynomial \(P(t) \) such that \(A^{-1} = P(A) \).

Let \(P(A) = \alpha_0 A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \ldots + \alpha_n I, \alpha_0 \neq 0, \)

But \(VA^*V = A^{-1} = P(A) \) [By Definition 2.1.1]

\[
A^* = VA^{-1}V = VP(A)V
\]

\[
A^* = V(\alpha_0 A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \ldots + \alpha_n I)V
\]

\[
= \alpha_0 VA^nV + \alpha_1 VA^{n-1}V + \alpha_2 VA^{n-2}V + \ldots + \alpha_n VV
\]

\[
= \alpha_0 (VAV)^n + \alpha_1 (VAV)^{n-1} + \alpha_2 (VAV)^{n-2} + \ldots + \alpha_n (I)
\]

\(A^* = P(VAV) \)

(ii) and (iii) ⇒ (i)

\(A^* = P(VAV) \)

Premultiplying and postmultiplying by \(V \), we get

\[
VA^*V = V(\alpha_0 (VAV)^n + \alpha_1 (VAV)^{n-1} + \alpha_2 (VAV)^{n-2} + \ldots + \alpha_n (I))V
\]

\[
= V(\alpha_0 VA^nV + \alpha_1 VA^{n-1}V + \alpha_2 VA^{n-2}V + \ldots + \alpha_n I)
\]

\[
= \alpha_0 A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \ldots + \alpha_n I = P(A) = A^{-1}
\]

Therefore \(VA^*V = A^{-1} \). Hence \(A \) is s-unitary.
(iii) and (i) \Rightarrow (ii)

Since A is s-unitary and nonsingular, by remark (2.3.7) it is possible to find a polynomial $q(t)$ such that $A^{-1} = q(A)$.

Let $q(A) = \beta_0 A^m + \beta_1 A^{m-1} + \beta_2 A^{m-2} + \ldots + \beta_m I$, $\beta_0 \neq 0$

A is s-unitary $\Rightarrow VA^*V = A^{-1}$

Put $A^* = P(VAV)$

$$= VP(VAV)V$$

$$= A^{-1}$$

$$= q(A)$$

$$V[\alpha_0 (VAV)^n + \alpha_1 (VAV)^n-1 + \alpha_2 (VAV)^n-2 + \ldots + \alpha_n (I)]V$$

$$= \beta_0 A^m + \beta_1 A^{m-1} + \beta_2 A^{m-2} + \ldots + \beta_m I$$

$$V[\alpha_0 VA^nV + \alpha_1 VA^{n-1}V + \alpha_2 VA^{n-2}V + \ldots + \alpha_n I]V$$

$$= \beta_0 A^m + \beta_1 A^{m-1} + \beta_2 A^{m-2} + \ldots + \beta_m I$$

Therefore $\alpha_0 A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \ldots + \alpha_n I$

$$= \beta_0 A^m + \beta_1 A^{m-1} + \beta_2 A^{m-2} + \ldots + \beta_m I$$

Since two polynomials in A are equal we must have $m = n$ and $\alpha_i = \beta_i$ for all i.

Therefore $P(A) = q(A)$.

Hence $A^{-1} = q(A)$.

41
Theorem 2.3.9

Let $A \in C_{n \times n}$. Let A be s-unitary matrix then A is normal iff $(AV)^2 = (VA)^2$

Proof:

Assume that A is normal.

$$AA^* = A^*A \quad \text{[By Definition 1.2.7]}$$

$$AVA^{-1}V = VA^{-1}VA \quad \text{------------------(2.3.10)}$$

Premultiplying and postmultiplying (2.3.10) by A^{-1}

$$VA^{-1}V = A^{-1}VA^{-1}V$$

Taking inverse on both sides

$$(VA^{-1}V)^{-1} = (A^{-1}VA^{-1}V)^{-1}$$

$$AVA = VAVA$$

$$(AV)^2 = (VA)^2$$

Conversely $(AV)^2 = (VA)^2$

$$AVA = VAVA \quad \text{--------------------------(2.3.11)}$$

Premultiplying (2.3.11) by $(AV)^{-1}$ and postmultiplying (2.3.11) by $(VA)^{-1}$ we get,

$$(AV)(VA)^{-1} = (AV)^{-1}(VA)$$

$$AVA^{-1}V = VA^{-1}VA \quad \text{[Since $(AV)^{-1} = VA^{-1}$]}$$

$$AA^* = A^*A$$

Therefore A is normal.
Theorem 2.3.12

Let $A \in C_{nn}$. Given U is s-unitary then A is s-unitary iff $U^\theta AU$ is s-unitary.

Proof:

Given A is s-unitary $\Rightarrow AA^\theta = A^\theta A = I$

U is s-unitary $\Rightarrow UU^\theta = U^\theta U = I$

$(U^\theta AU)^\theta(U^\theta AU) = U^\theta A^\theta UU^\theta AU$

$= U^\theta A^\theta AU$ \hspace{1cm} [Since $U^\theta U = I$]

$= U^\theta IU$ \hspace{1cm} [Since $A^\theta A = I$]

$= U^\theta U = I$

$(U^\theta AU)(U^\theta AU)^\theta = U^\theta AUAU^\theta A^\theta U$

$= U^\theta AIA^\theta U$ \hspace{1cm} [Since $U^\theta U = I$]

$= U^\theta AA^\theta U$

$= U^\theta IU = U^\theta U = I$ \hspace{1cm} [Since $A^\theta A = I$]

Therefore $U^\theta AU$ is s-unitary.

Conversely, Assume that $U^\theta AU$ is s-unitary where U is s-unitary.

i.e $(U^\theta AU)(U^\theta AU)^\theta = (U^\theta AU)^\theta(U^\theta AU) = I$

$\Rightarrow U^\theta AUU^\theta A^\theta U = U^\theta A^\theta AUU^\theta AU = I$

$\Rightarrow U^\theta AA^\theta U = U^\theta A^\theta AU = I$ \hspace{1cm} [Since $U^\theta U = I$]

Premultiplying by U and postmultiplying by U^θ we get,
\[\Rightarrow UU^\theta AA^\theta UU^\theta = UU^\theta A^\theta A UU^\theta = UIU^\theta \]

\[\Rightarrow AA^\theta = A^\theta A = I \]

Hence \(A \) is s-unitary.

Theorem 2.3.13: Let \(A \in C_{n \times n} \) be s-unitary. Let \(B \) is similar to \(A \) such that \(B = C^{-1} AC \).

If a matrix \(C \) is s-unitary then \(B \) is s-unitary.

Proof:

\[VB^*V = V(C^{-1} AC)^*V = VC^*A^*(C^{-1})^*V \]

\[= VC^*A^*(VC^*V)^*V \]

\[= VC^*A^*VCVV \]

\[= VC^*A^*VC \]

[Since \(V^2 = I \)]

\[= V(C^{-1} V)(VA^{-1} V)VC \]

\[= C^{-1} A^{-1} C \]

\[= (C^{-1} AC)^{-1} = B^{-1} \]

[By Definition 1.2.21]

Hence \(B \) is s-unitary.
CHAPTER-3

S-EIGEN VALUES AND S-UNITARY SIMILARITY OF MATRICES

In this chapter, eigen value and s-eigen value of a matrix are found. Relation between s-eigen value of a matrix A and eigen value of a matrix VA are analysed. A s-eigen value of a matrix is defined as a special case of generalized eigen value problem $Ax = \lambda Bx$ for some matrices A and B [42].

In this chapter, theorems related to s-unitary matrices are derived. The concept of s-unitaly similar matrices are introduced and established some theorems on this. The concept of families of matrices to be s-unitarily similar are also introduced and derived some theorems.