CONTENTS

<table>
<thead>
<tr>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration by the Candidate</td>
<td>i</td>
</tr>
<tr>
<td>Certificate from guide</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Coal production in India:</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Waste generated from coal mining:</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Major pollutants from coal mining industry</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Importance of uncontaminated water and soil</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Water and soil contamination with industrial waste</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Pollution due to heavy metals and some trace metals</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Fate of solid wastes and contaminants in effluents</td>
<td>14</td>
</tr>
<tr>
<td>1.8 Pollution studies on water and soil system</td>
<td>15</td>
</tr>
<tr>
<td>1.9 Review of the literature on Coal mining area</td>
<td>17</td>
</tr>
<tr>
<td>1.10 Objectives of the present study</td>
<td>17</td>
</tr>
</tbody>
</table>

CHAPTER 2 STUDY AREA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 General description of the area</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Topography and Drainage</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Climate</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Flora and Fauna</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Industry</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Inhabitants</td>
<td>22</td>
</tr>
<tr>
<td>2.7 Previous work</td>
<td>22</td>
</tr>
<tr>
<td>2.8 History of Coal mining</td>
<td>23</td>
</tr>
<tr>
<td>2.9 Geology of the Coalfields of North Eastern India</td>
<td>23</td>
</tr>
</tbody>
</table>
2.10 Coal quality 25
2.11 Pollutant present with coal 25
2.12 Existing methods of mining 25

CHAPTER 3 METHODOLOGY
3.1 Introduction 27
3.2 Field investigation 27
 3.2.1 Selection of sampling sites 27
 3.2.2 Sample collection 27
 3.2.3 Frequency of Sampling 27
3.3 Laboratory Investigation 30
 3.3.1 Chemicals and Glassware 30
 3.3.2 Analysis of water 30
 i pH and Electrical Conductivity 30
 ii TS, TDS, TSS 31
 iii Major anions 31
 Carbonate and Bicarbonate 31
 Chloride 32
 Fluoride 32
 Nitrate 32
 Sulphide 33
 Sulphate 33
 Phosphate 34
 iv Major cations 34
 Sodium and Potassium 34
 Calcium and Magnesium 34
 Aluminium and Iron 35
 v Trace metals, As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Se, Sn, V, and Zn. 35
 3.3.3 Analysis of soil 37
 i Physical properties of soil 37
 pH 37
 Electrical Conductivity (EC) 38
CHAPTER 4 SOIL CHEMISTRY OF THE STUDY AREA

4.1 Physicochemical characteristics of soil.

4.1.1 Soil Texture 51
4.1.2 Bulk Density 52
4.1.3 Moisture Content (MC) 57
4.1.4 Particle density (PD) 57
4.1.5 Porosity 57
4.1.6 Water holding capacity (WHC) 60
4.1.7 Organic carbon (OC) 65
4.1.8 Hydraulic conductivity (HC) 65
4.1.9 Soil pH 69
4.1.10 Electrical Conductivity (EC) 69
4.1.11 Total Nitrogen (TN) 72

4.2 Anionic composition of the soil 76
4.2.1 Carbonate (CO$_3^{2-}$) and bicarbonate (HCO$_3^-$) 76
4.2.2 Chloride (Cl$^-$) 79
4.2.3 Sulphate (SO$_4^{2-}$) 79
4.2.4 Phosphate (PO$_4^{3-}$) 83

4.3 Major cation composition 86
4.3.1 Calcium (Ca) and Magnesium (Mg) 86
4.3.2 Sodium (Na) and Potassium (K) 88
4.3.3 Iron (Fe) 92

4.4 Trace metals 95
4.4.1 Aluminum (Al) 98
4.4.2 Cadmium (Cd) 98
4.4.3 Copper (Cu) 101
4.4.4 Cobalt (Co) 102
4.4.5 Chromium (Cr) 102
4.4.6 Manganese (Mn) 102
4.4.7 Nickel (Ni) 105
4.4.8 Mercury (Hg) 109
4.4.9 Lead (Pb) 109
4.4.10 Tin (Sn) 112
4.4.11 Vanadium (V) 112
4.4.12 Zinc (Zn) 115
4.4.13 Arsenic (As) and Selenium (Se) 116

4.5 Major and Minor Oxide present in the soil samples 118

4.6 Correlation among the different soil quality parameters 119

4.7 Clay minerals present in the soil samples 125
4.7.1 XRD measurement 125
4.7.2 IR measurement 125

4.8 Distribution of metals into different chemical fractions 129
4.8.1 Introduction 129
CHAPTER 5 WATER CHEMISTRY OF THE STUDY AREA

5.1. Physicochemical characteristics of water samples

5.1.1 pH

5.1.2 Electrical conductivity (EC)

5.1.3 TSS, TDS and TS

5.1.4 Major Anions

(a) Carbonate (CO$_3^{2-}$)
(b) Bicarbonate (HCO$_3^-$)
(c) Chloride (Cl$^-$)
(d) Fluoride (F$^-$)
(e) Phosphate (PO$_4^{3-}$)
(f) Sulphate (SO$_4^{2-}$)
(g) Sulphide (S$^{2-}$)
(h) Nitrate (NO$_3^-$)

5.1.5 Major Cations

(a) Sodium (Na) and potassium (K)
(b) Calcium (Ca), magnesium (Mg) and total hardness

5.1.6 Minor cations and trace elements

(a) Iron (Fe) and Aluminium (Al)
(b) Arsenic (As) 184
(c) Cadmium (Cd) 184
(d) Chromium (Cr) (total) 187
(e) Cobalt (Co) 187
(f) Copper (Cu) 189
(g) Lead (Pb) 192
(h) Manganese (Mn) 192
(i) Mercury (Hg) 196
(j) Nickel (Ni) 196
(k) Selenium (Se) 199
(l) Tin (Sn) 199
(m) Vanadium (V) 202
(n) Zinc (Zn) 202

5.1.7 Correlation among the water quality parameters 205

CHAPTER 6 CONCLUSIONS FROM THE STUDY

6.1 General conclusions from the study 214
6.2 Suggestions for further work 221

CHAPTER 7 REFERENCES 222