In the modern scientific age competitive sports has become such a complex phenomena that the subject has to go under various micro scientific investigations to achieve optimum performance. Sports scientists of various specific fields help sportsmen in one or another way to advance their performance up to the optimal level. Competitive sports has become a means to show the ascendancy of the country over the other and this trend is considered to divert the attention from accumulating the most lethal weapons which are the threat to the whole mankind.

The remarkable advancement in the field of physical education and sports is the result of the researches and experiments done by the sports scientists with the full prop up and encouragements of the governments of the various countries. Hence, the sports programs are very costly affair and for most of the sports advanced countries it has become a multimillion business right from selecting their sportspersons to the Olympic Gold Medal.

To achieve excellence in Olympics is a multi million investment; so before investing, the first and foremost question confronting a physical education teacher or coach, when he/she assembles his/her prospective candidates at the beginning of the session is, which of sports persons will help him/her to achieve his/her ultimate Goal. Previously physical talent was considered as the only recommendation for a player. The recent development of sports science has made accurate technique available for the assessment of an individual’s potential for a particular sports event. Sports are now dominated by a scientific breed of coaches. These new generation coaches are interested in a combination of physical talent with other qualities that not only influence performance but also help to sustain the sportsperson in their commitment of sports Jack H L (1982).

The identification of future elite sportspersons in early childhood has become a necessity. The sportspersons selected for specific sports activities require suitable environment/conditions and sports facilities including advance/latest sports equipments, rational style of life and services of sports experts like well educated and
experienced coaches, sports physicians, dietitians, sports psychologists and sports medicine specialists. Such facilities are necessary for all selected sports persons of various sports events. Therefore, correct identification, selection and placement of young talents is becoming important everywhere Dirix A et al. (1986).

The sports science has taken the youth of today to enable them the ecstasy of sports performance and rapidity of breaking the existing records motivates them to work beyond their physiological limits. The top level competitions such as Olympic Games, World Championship, Asian Games, Common wealth Games etc. enable to study various aspects of athletes, specially their genetics and anthropological characteristics. Some findings and conclusions of such studies have the applications in the field of human biology, physical education, sports medicine and indeed all humanity by providing a better understanding of human excellence and diversity. The genetics investigations included study of chromosomes, blood group, hormone, blood protein, palm prints and fingers Alfonaso L. et al. (1974).

Sportspersons are born not made, it is a normal belief; but to a certain extent they can also be made. So if that born athlete can be identified and trained properly and systematically at an early stage, the best results can be brought in without any undue wastage of time, money and human efforts. Hence, the process of identification of sports talent must lay emphasis on identifying the general qualities, formulation of testing methods and criteria to measure the inherited qualities that are required to make an individual champion sportsperson.

Nowadays the need of studying digital fingers which is a new concept in talent identification, is gaining importance in the field of genetics, psychology, physiology and in the research field of sports. Study of digital fingers can play an vital role in identifying the talent in the field of sports.

Digital Finger Ratio

The digit ratio is the ratio of the length of different digits i.e. fingers of the hands or the fingers of the toes, typically as measured from the bottom crease where the finger joins the hand to the tip of the finger. It has been suggested by some scientists that the ratio of the two digits is particular, the digits are known as 1D (thumb), 2D (Index finger), 3D (Middle finger), 4D (Ring finger) and 5D (Small finger). The 2nd and 4th finger is affected by exposure to androgens such as
testosterone (Pheleps, 1952) while in the uterus and this 2D:4D the ratio between index finger and ring finger can be used as a crude measure for prenatal androgen exposure or we can say that we can assess the level of testosterone in the body of an individual by measuring his 2D:4D ratio.

The concept of the digital finger ratio was first given by Baker F (1888), the ratio between the length of the 2nd and 4th digits (2D:4D) is a sexually dimorphic trait Baker (1888) & George (1930). In general, mean 2D:4D has been found to be lower in men compared to women Phelps (1952). The differentiation of the digits is under the control of Homeobox or Hox genes (the posterior-most Hoxd and Hoxa genes), which also control the differentiation of the testes and ovaries Peichel et al. (1997); Herault et al., (1997). This common control of the distal limbs and genital bud may be seen when progressive removal of posterior Hox gene function results in loss of digits, genital bud derivatives, and fertility Kondo et al. (1997); Peichel et al. (1997); Mortlock & Innis, (1997). Manning et al. (1998) suggested that the common control of the differentiation of the gonads and digits may mean that the functioning of the former may be reflected in the formation of the latter. Patterns of 2D:4D ratios may therefore reflect aspects of gonadal function such as the production of testosterone and estrogen.

In 1983 Dr. Glenn Wilson of King’s College, London published a study examining the correlation between assertiveness in women and their digit ratio. This was the first study to examine the correlation between digit ratio and psychological trait within number of the same sex. Wilson proposed that skeletal structure and personality were simultaneously affected by sex hormone in utero. Digit ratio research has since exploded with a very active and ongoing programme of research by John Manning who is also famous as professor of fingers, in Liverpool and March Breedlove in California. John Manning done a tremendous work in the field of digital fingers. He compared the digital finger with many aspects of human physiology and human psychology. In 2002 John Manning published a book summarizing all his research work on the topic to the point, confirming the role of prenatal testosterone in digit ratios and their psychological correlates.

2D:4D is sexually dimorphic systematic difference in form between individuals of different sex in the same species Baker (1888) & George (1930). In men, the second digit tends to be the shorter than the fourth and in females the second
tends to be the same size or slightly longer than the fourth. This trait may be better described as ‘sexually differentiated’ rather than ‘sexually dimorphic’ in recognition of the fact that the effect size is fairly small (2D:4D distribution of the two sexes overlap to a great degree), especially as compared to other sexually dimorphic traits such as height.

Digit ratio research often meets with a considerable degree of skepticism due to the obvious parallels to palmistry, phrenology and other discredited traditions within the field of the anthropometry. Millet K. et al. (2006) reported that 2D:4D is related to prenatal testosterone levels. Low ratio has been associated to a number of fitness related factors such as high status in competitive sports and in music. Recent evidence suggest that 2D:4D is also related to economic decision making.

It is not clear why digit ratio ought to be influenced by prenatal hormones. There is evidence of similar traits e.g. otoacoustic emissions and arm-trunk length ratio, which shows similar effects. The Hox genes is responsible for this these effects i.e. both digit and gonad growth have been implicated in this pleiotrophy Peichel et al. (1997) & Herault et al. (1997). Alternatively, direct effects of sex hormones on bone growth might be responsible.

Evidence of Androgen Effects on Digit Ratio

Women with congenital adrenal hyperplasia (CAH) have lower masculinized 2D:4D Brown et al. (2002) CAH leads to greatly elevated androgen concentration in utero. The ratio of testosterone to estradiol measured in amniocentesis samples correlates with the child’s subsequent 2D:4D ratio Lutchmaya et al. (2004). The effect of a child’s sex is confusingly controlled for in this study. Digit ratio in men correlates with genetic variation in the androgen receptor gene Manning et al. (2003). Men with genes that produce androgen receptors that are more sensitive to testosterone have lower, more masculine, digit ratio.

In pheasants, the ratio of the 2nd and 4th digit of the foot has been shown to be influenced by manipulations of testosterone in the egg Romano et al. (2005). There is evidence that this reflects fetal exposure to the hormone testosterone McIntyre (2007) and estrogen. Another study has evidence to show that the ratio in inherited Paul et al. (2006).
The second to fourth digit ratio (2D:4D), a sexually dimorphic, phenotypic characteristic putatively associated with prenatal androgen action, has been used to evaluate the hypothesized relation between prenatal hormonal factors and a variety of sexually dimorphic behaviors, including sex-linked psychopathology. Similar digit ratios, suggestive of weaker prenatal androgen action, have been associated with female-linked disorder (e.g. autism), and larger digit ratio, suggestive of weaker prenatal androgen action, have associated with female-linked disorders (e.g. depression and eating disorders). They evaluated the possible relation between digit ratio and another traditionally female linked disorder, anxiety, 2D:4D ratios were measured in a non-clinical sample (58 men and 52 women). Participants also completed a battery of anxiety and gender role measures and performed two spatial/cognitive tasks typically showing a female advantage (mental rotation and targeting) and two tasks typically showing a female advantage (location memory and spatial working memory). Men with a more feminine pattern of sex-linked traits and behaviors (including digit ratios) reported greater anxiety. In contrast, greater anxiety in women was associated with both female-typical and male-typical traits and behaviors, but no significant association between digit ratio and anxiety was found. This pattern of results suggests that the development of anxiety is multiple determined, with contributing factors varying by sex. (Evardone M & Alexander GM, 2007)

Pokrywka L et al. (2005), Contested in the animal world to determine social status almost exclusively involved male, which points out that androgen may be indispensable in the development of competitive instincts. In animal studies, it has been shown that prenatal exposure to androgens may produce permanent change toward more aggressive behavior in adulthood. Thus, there is a strong suspicion that women involved in competitive activities, such as sports, may have been exposed to high androgen level in utero. There is strong evidence that the ratio between the second to fourth digits (2D:4D) correlates negatively with intrauterine androgen concentrations and could potentially be used as marker for prenatal androgen exposure. They tested the hypothesis that women engaged in sports have lower 2D:4D, a marker of high prenatal androgen exposure. They measured the 2D:4D ratio in elite and non-elite female athletes and compared them with female individuals not engaged in any sports activities. Their results showed that elite female athletes have
significantly lower left hand 2D:4D ratio compared to the control group (p<0.05). Therefore, it can be speculate that low 2D:4D ratio may correlate positively with sports potential in females.

Digital Finger Ratio (2D:4D) and Various Field of Research

Kilduff LP et al. (2013) tested the hypothesis that 2D:4D is strongly linked to aggression in "challenge" situations in which testosterone is increased. Participants were exposed to an aggressive video and a control video. Aggression was measured after each video and salivary free testosterone levels before and after each video. Compared to the control video, the aggressive video was associated with raised aggression responses and a marginally significant increase in testosterone. Left 2D:4D was negatively correlated with aggression after the aggressive video and the strength of the correlation was higher in those participants who showed the greatest increases in testosterone. The control video did not influence testosterone concentrations and there were no associations between 2D:4D and aggression. They found that 2D:4D moderates the impact of an aggressive stimulus on aggression, such that an increase in testosterone resulting from a "challenge" is associated with a negative correlation between 2D:4D and aggression.

Ellis L and Hoskin A W (2013) found a significant correlation between the 2D:4D and criminality. A decade old theory hypothesizes that brain exposure to androgens promotes involvement in criminal behavior. General support for this hypothesis has been provided by studies of post pubertal circulating levels of testosterone, at least among males. However, the theory also predicts that for both genders, prenatal androgens will be positively correlated with persistent offending, an idea for which no evidence currently exists. The present study used an indirect measure of prenatal androgen exposure-the relative length of the second and fourth fingers of the right hand (r2D:4D) to test the hypothesis that elevated prenatal androgens promote criminal tendencies later in life for males and females. Questionnaires were administered to college students of Malaysia and United States. Respondents reported their r2D:4D relative finger lengths along with involvement in 13 categories of delinquent and criminal acts. Statistically significant correlations between the commission of most types of offenses and r2D:4D ratios were found for males and females even after controlling for age. It is concluded that high exposure to
androgens during prenatal development contributes to most forms of offending following the onset of puberty.

Rothkopf I and Turgeon S M (2013) observed that female-typical characteristics in elementary school girls' drawings were correlated with a feminized digit ratio (2D:4D), a marker for prenatal androgen exposure. However, this observation was limited to older girls, suggesting that social factors mediate the relationship between 2D:4D and drawing. To examine the hypothesis that the influence of prenatal androgen on girls' drawing is mediated by an effect of early androgens on sex-typical behavior, they examined 2D:4D, free drawings, and scores on the Recalled Childhood Gender Identity (RCGI) Questionnaire in a population of college students. Characteristics of participants' free drawings were assessed and those that showed sex differences were compared with 2D:4D and RCGI scores. Men had smaller 2D:4D ratios than women, used fewer total colors, used fewer pinks, purples, and blues, and had higher gender-typical scores on the RCGI. Women's drawings were more likely to contain flowers and animals and men's drawings were more likely to represent sports. Within-sex RCGI and 2D:4D scores were not significantly correlated. Significant within-sex relationships between 2D:4D and RCGI and drawing behavior were observed but the effects appeared to be independent; the hypothesis that gender-typical childhood behavior mediates the effect of prenatal androgen on drawing characteristics was not supported.

Durdiakova J et al. (2013) stressed that testosterone was shown to organize brain and modulate cognitive functions. It was currently unknown whether mental rotation is also associated with prenatal testosterone exposure and testosterone-related genetic polymorphisms. The motive of their study was to analyze associations between mental rotation performance, the actual testosterone levels, the prenatal testosterone level (expressed as 2D:4D ratio) and the androgen receptor CAG repeat polymorphism in intellectually gifted boys. 147 boys between 10-18 years with IQ>130 were enrolled. Saliva samples were collected and used for ELISA of actual levels of salivary testosterone. The 2D:4D finger length ratio as an indicator of prenatal testosterone was measured on both hands and averaged. Amthauer mental rotation test was used for the assessment of this spatial ability. The CAG repeat polymorphism in the androgen receptor gene was analyzed using PCR and capillary electrophoresis. Linear regression revealed that 2D:4D finger length ratio and the
number of CAG repeats in the androgen receptor gene were associated with mental rotation. Actual levels of testosterone did not correlate significantly with mental rotation. Multivariate analysis of covariance revealed that after adjustment of age as a confounding variable, only the effect of the genetic polymorphism was significant. The results were in line with their previous genetic analysis of intellectually gifted boys showing the importance of CAG repeat polymorphism in the androgen receptor gene. Details of the interactions between androgen signaling, testosterone levels and its metabolism especially during the prenatal development of brain function remain to be elucidated.

Digital Finger Ratio (2D:4D) and Sporting Ability

Manning et al. (2007) performance in training for endurance running (ER) was associated with high prenatal testosterone (T), as measured by low 2D:4D, in both men and women. In cross country races from 1 to 4 miles, 2D:4D explained about 25% of the variance in both male and female ER. Therefore, speed is ER was dependent on a proxy for prenatal T. 2D:4D correlates with performance in sports and exercises, which tests a mix of strength and fitness, but the associations are in general quite weak with 2D:4D accounting for less than 10% of the variance in performance. Our finding that 2D:4D explains about 25% of the variance in ER suggested that prenatal T is important in determining efficiency in aerobic exercise.

The second to fourth digit ratio (2D:4D) is a sexually dimorphic trait (men tend to have lower values than women) and a likely biomarker for the organizational (permanent) effect of prenatal androgens on the human brain and body. Prenatal testosterone, as reflected by 2D:4D has many extra genital effects, including its relevance for the formation of an efficient cardiovascular system. Previous research, reviewed here, has therefore investigated possible associations of 2D:4D with sports performance. Several studies found more masculinized digit ratio pattern (low 2D:4D values or a negative right-minus-left difference in 2D:4D) to be related to high performance in running, soccer, and skating. The present research tested this hypothesis in a sample of 54 tournament fencers, predominantly from Austria. For men negative right-left difference in 2D:4D corresponded significantly to better current as well as highest national fencing ranking, independent of training intensity and fencing experience. The mean 2D:4D values of these fencers were significantly lower and the proportion of left-hander was elevated relative to the local general
population. For the right hand, the ratio was somewhat lower in male sabre fencer than the male epee and foil fencer combined and significantly lower in left-handed compared to right handed fencers. Although non-significant due to low statistical power, effect sizes suggested that crossed virus congruent hand-eye and hand-foot preferences might also be related to fencing performance. The present findings add to the evidence that 2D:4D might be a performance indicator for men across a variety of sports (Voracek M et al. 2006).

Sudhakar H H et al. (2013) in their examined associations between 2D:4D and performance of both male and female National level Indian swimmers. Similar age group non-sports personnel formed the control group. Lengths of second and fourth digits were measured after scanning both hands and their ratio calculated. Their results shown lower 2D:4D values in males compared to females (P < 0.05). Among male, but not female, swimmers had significantly (P < 0.05) lower 2D:4D ratio. Low 2D:4D in male swimmers suggested they are more prenatally programmed via long-lasting extra genital effects of testosterone. 2D:4D ratio could be used to identify young sports personnel who have potential to reach high levels of performance.

Joyce C W et al. (2013) conducted a study to investigate the relationship between aggressive tendencies with boxers’ fractures. As 2D:4D ratio has implications in the sporting, academic, financial and sexual arenas. The purpose of this study was to examine the association between smaller finger length ratios (2D:4D) and boxers’ fractures, in both sexes, by comparing the 2D:4D ratios in 150 boxers’ fractures and comparing them to matched controls. Boxers’ fractures were an injury classically incurred during acts of aggression and they postulated that this cohort of patients would have a smaller 2D:4D ratio in comparison to the normal population mean ratio. 150 radiographs from patients with boxers’ fractures secondary to aggressive actions were analysed and the 2D:4D ratio was calculated. A further 150 X-rays from patients not involved in aggressive activities were used as a control group and the 2D:4D ratio was calculated in the same manner. As predicted, they found that 2D:4D in males was lower than females in all of the groups. However, their results showed that those presenting with a boxers’ fracture due to an aggression related injury had a statistically significant smaller 2D:4D ratio when compared to the normal population. Boxers’ fractures are injuries that typically occur from an aggressive act. It is well documented that a low 2D:4D ratio is reflective of an
increased prenatal exposure to androgens, particularly testosterone. They have shown that boxers’ fractures are associated with a smaller 2D:4D ratio than the normal population, thus suggesting that persons exposed to high levels of prenatal androgens are more likely to exhibit aggressive tendencies in adulthood.

Fetal and adult testosterone may be vital in the establishment and maintenance of sex-dependent abilities associated with male physical competitiveness. It has been reported that digit ratio (2D:4D) is negatively associated with prenatal testosterone, and it is also negatively associated with ability in sports such as football, as average '2D:4D digit ratio' in football internationals of England (N=37) =0.94; black football professionals of England (N=13) = 0.93; Brazilian professionals (N=99) = 0.93; Brazilian first team professionals (N=20) = 0.92 (Manning 2002, Manning and Taylor 2001), middle distance running, and endurance running (Manning 2009a), sprinting ability (Manning & Hill 2009b), skiing (Manning 2002), rugby performance (Bennett et al.,2010), which are dependent upon an efficient cardiovascular system. Longman et al. (2011) has suggested that fetal testosterone exposure has long-term effects on traits associated with sports requiring high power (physical strength) and well-developed cardiovascular systems where as Voracek et al. (2006) reported similar effect in the female fencers. 2D:4D difference. The relationship between digit ratio and sports like archery and shooting has not been defined. Arms strength, calmness, concentration, accuracy and consistency are far more important virtues for an archer and shooter than aerobic endurance capacity, power and aggression. We investigated the difference and correlation of digit ratio and salivary testosterone in elite players of Handball, Volleyball, Basketball, Football, Boxing, Wrestling, Judo, Shooting and Archery, which require different physiological, psychological and physical compositions.

Statement of Problem

"A STUDY OF DIGITAL FINGER RATIO AND SALIVARY TESTOSTERONE IN INDIAN ELITE SPORTS PERSONALS"

Objectives of the Study

1. To find out the digital finger ratio 2D:4D of the elite Indian sports persons participating in Boxing, Wrestling, Judo, Volleyball, Basketball, Football, Handball, Shooting and Archery.
2. To find out the digital finger ratio 2D:4D of non-sports personals both males and females.

3. To find out the concentration of salivary testosterone in the elite Indian sports persons of Boxing, Wrestling, Judo, Volleyball, Basketball, Football, Handball, Shooting and Archery.

4. To find out the concentration of salivary testosterone in non-sports personalis both males and females.

5. To find out the difference in the digital finger ratio 2D:4D between elite sports persons participating in different sports discipline.

6. To find out the difference in the digital finger ratio 2D:4D between elite sports persons and non sports persons.

7. To find out the difference in the concentration of salivary testosterone between elite Indian sports persons of different sports discipline.

8. To find out the difference in the concentration of salivary testosterone between elite Indian sports persons and non-sports personalis.

9. To find out the correlation between digital finger ratio 2D:2D and level of salivary testosterone present in elite sports and non-sports personalis.

Hypothesis of the Study

1. There exists no significant difference in the digital finger ratio 2D:4D between elite sports persons participating in different sports discipline i.e. Boxing, Wrestling, Judo, Volleyball, Basketball, Football, Handball, Shooting and Archery.

2. There exists no significant difference in the digital finger ratio 2D:4D between elite sports persons and non-sports persons.

3. There exists no significant difference in the concentration of salivary testosterone between elite Indian sports persons of different sports discipline.

4. There exists no significant difference in the concentration of salivary testosterone between elite Indian sports persons and non-sports personalis.

5. There exists no significant correlation between digital finger ratio 2D:2D and level of salivary testosterone present in elite sports and non-sports personalis.
Delimitations

1. The study was confined to a total sample of 850 both male and female.

2. The study was confined to 550 elite Indian sports persons both male (N=300) and female (N=250) participating in Boxing, Wrestling, Judo, Volleyball, Basketball, Football, Handball, Shooting and Archery.

3. The study was further delimited to three hundred (Male = 150 & Female = 150) non sports personals who have never ever participated in any competitive sports and pursuing their masters degree from Kurukshetra university.

4. In the elite sports category only those sports personals who have won (First, Second & Third) position at National/All India Inter-University levels in the discipline of Boxing, Wrestling, Judo, Volleyball, Basketball, Football, Handball, Shooting and Archery were selected as subjects.

5. The study was further delimited to finger ratio 2D:4D of both right and left hands.

6. Concentration of testosterone hormone present in the saliva of subjects was analyzed with Solid Phase Radio Immuno Assay at Thyrocare Technologies limited, Mumbai.

Limitations

The lifestyle, habits, heredity, nutritional intakes, physical fitness level, psychological and physiological variables were beyond control of the research worker. These were considered as limiting factors of the study.

TERM USED

Digital Finger Ratio

It is the numerical ratio of Phalanges bones i.e. length of index finger: length of middle finger: length of index finger: length of ring finger; length of index finger: length of little finger and so on. As far as this study is concerned the Digital finger ratio is the ratio of index finger v/s ring finger i.e. length of index finger: length of ring finger or ratio between the length of second and fourth finger i.e. 2D:4D. the relative lengths of the digits is set before birth and probably by week 14 of pregnancy (Garn et al, 1975; Manning et al, 1998).
Testosterone/ Salivary Testosterone

Testosterone hormone is a steroid secreted from the testis and the adrenal cortex in men and from the adrenal cortex and ovary in women. Testosterone is also produced by peripheral tissues from androstenedione, which is of little physiological significance in men, however in women about half of circulating testosterone is derived from this origin. The action of testosterone is both and anabolic. Testosterone measurements are used mainly for clinical evaluation of hypogonadism in males and hyperandrogenic states in females. Most of the circulating testosterone is bound to three proteins: sex hormone binding globulin (44-78%), albumin (20-54%) and cortisol binding globulin (small amount). Only about 2-3% of the total circulating testosterone remains unbound or in the free form. Only the free portion (or the non-SHBG bound fraction) of the circulating testosterone is thought to be available to tissues where it exerts its biological actions. The salivary hormone assays are advocated for their noninvasive, easy sample collection method. Salivary testosterone is of great value for it represents a filtered fraction of plasma testosterone and is independent of flow rate Turpeinen U et al. (2012).

Elite Sports Person

The word (also spelled Elite) is taken originally from the Latin, eligere, “to elect” (http://www.oxforddictionaries.com/definition/english/elite), the elite is a relatively small dominant group within a large society, which enjoys a privileged status envied by individuals of lower social status. The position of an elite at the top of the social strata almost invariably puts it in a position of leadership and often subjects the holders of elite status to pressure to maintain their position as part of the elite.

The word elite sports persons in present study means Indian sports persons both male and female who had participated and got first, second and third position at least at national/ inter-university level in Boxing, Wrestling, Judo, Volleyball, Basketball, Football, Handball, Shooting and Archery.

Significance of the Study

“Catch them young and coach them right” the adage means the selection of right individual for the right sports/ game at an early age. But in India we have no
scientific approach for the talent selection. The results of the present project will provide strong scientific guidelines for the selection of talent sports/games.

- The study will be helpful in formulation of objective criteria for talent selection at very early age of individuals on the basis of digital finger ratio (2D:4D) for the various sports/event category.

- Digital finger ratio (2D:4D) will help in classification of specific individual for a specific sports event.

- The findings of the study will throw light on digital finger variations among various sports groups.

- The findings of the study also will add to the critical literature in the field of researches of digital finger ratio.

- This study will also be helpful in the future studies of the digital finger ratio and this will also motivate the future researcher to take similar study with other variables of relations with the digital finger ratio.