CONTENTS

1.0 Introduction
1.1 A brief account of growth of immunology as a science 1
1.2 Innate immunity 3
1.3 Adaptive immunity 6
1.4 Toll-like receptors: history, phylogeny, structure and signalling 10
1.5 The known TLR ligands 18
1.6 Toll-like receptors and its ligands in infection and inflammatory processes 19
1.7 Nod-like receptors 53
1.8 NLRs in inflammasomes 55
1.9 NLRs and its ligands in bacterial infections and inflammations 57
1.10 *Helicobacter pylori*: history, taxonomy, genome and culture 70
1.11 Epidemiology and clinical conditions associated with *H. pylori* 73
1.12 Pathogenesis and virulence factors of *H. pylori* 77
1.13 Immune responses to *H. pylori* infection 85
1.14 Host gene polymorphisms and susceptibility to *H. pylori* associated pathologies 87
1.15 Pattern recognition receptors in *H. pylori* infection 88

2.0 Materials & Methods
2.1 Materials 93
2.1.1 Chemicals 93
2.1.1.1 Antibiotics 93
2.1.2 Enzyme inhibitors 93
2.1.3 Clinical specimen 93
2.1.4 Custom made PCR primer 93
2.1.4.1 Real time PCR dual labelled primers 94
2.1.5 Real time Taqman PCR primers 94
2.1.6 Antibodies 95
2.1.6.1 Primary antibodies 95
2.1.6.2 Secondary antibodies 95
2.1.7 Molecular biology reagents and kits 96
2.1.8 Bacteria 96
2.1.8.1 *Helicobacter pylori* strains 96
2.1.8.2 Bacterial culture media and plates 97
2.1.9 Eukaryotic cell lines 97
2.1.9.1 Eukaryotic cell culture media 98
2.2 Methods 99
2.2.1 Collection and transport of clinical specimen 99
2.2.2 Biochemical and molecular biology methods 99
2.2.2.1 Rapid urease test 99
2.2.2.2 DNA isolation from clinical biopsy specimen 99
2.2.2.3 PCR for *H. pylori* genotyping 100
2.2.2.4 PCR for IL-1 receptor antagonist polymorphism 100
2.2.2.5 RNA isolation and Dnase digestion 101
2.2.2.6 Quantitative and qualitative assessment of RNA using Nanodrop™ method 102
2.2.2.7 Agarose electrophoresis for checking the integrity of RNA 103
2.2.2.8 Reverse transcriptase PCR 103
2.2.2.9 Taqman real time PCR 104
2.2.2.10 Immunoprecipitation 106
2.2.2.11 SDS-polyacrylamide electrophoresis Western blot analysis

2.2.2.12 ELISA (Enzyme linked immunosorbent assay)

2.2.3 Bacterial culture methods

2.2.3.1 *Helicobacter pylori*

2.2.4 Eukaryotic cell culture methods

2.2.4.1 THP-1 monocytic leukaemia cell line culture

2.2.4.2 THP-1 derived Dendritic cell culture

2.2.4.3 HEK293 cell line culture

2.2.4.4 HEK293-TLR2 cell line culture

2.2.4.5 HEK293-TLR5 cell line culture

2.2.4.6 HEK293-TLR10-HA cell line culture

2.2.5 Infection assay

2.2.5.1 *Helicobacter pylori* infection with THP-1 cells

2.2.5.2 *Helicobacter pylori* infection with THP-1 derived DCs

2.2.5.3 *Helicobacter pylori* infection with HEK293 cell lines (HEK293, HEK293-TLR2, HEK293-TLR5 and HEK293-TLR10-HA)

2.2.6 Inhibitor assay

2.2.7 Statistical analysis

3.0 Results

3.1 THP1 cells infection with *H. pylori* and isogenic mutants

3.2 TLR mRNA expression in THP-1 cells during infection with *H. pylori* and isogenic mutants

3.3 Immunoprecipitation and Western blot analysis of TLR-5 and TLR-10 from THP1 cells during infection with *H. pylori* and ∆flaA mutant

3.4 TLR mRNA Expression in THP1 monocyte derived Dendritic Cells during Infection with *H. pylori* and ∆flaA isogenic mutant

3.5 TLR mRNA expression in HEK293 cells stably transfected with TLR-2, TLR-5 and TLR-10, respectively, during infection with *H. pylori* and isogenic mutants

3.6 Induction of phosphorylation of IRAK-1 (ser376) in THP-1 cells during infection with *H. pylori* and isogenic mutants

3.7 IRAK-M, a TLR signalling negative regulator, expression in THP-1 cells during infection with *H. pylori* and isogenic mutants

3.8 NLRs and ASC/PYCARD expression in THP-1 cells during infection with *H. pylori* and isogenic mutants

3.9 Interleukin 1β and IL-18 gene expression, Caspase-1 activation and Interleukin 1β processing and secretion from THP1 cells during infection with *H. pylori* and isogenic mutants

3.10 Effect of SRC Kinase inhibitor PP2, Pan-caspase Inhibitor Z-VAD-FMK and EGFR Kinase inhibitor-AG1478 on Interleukin 1 beta secretion from THP1 monocytes during infection with *H. pylori* P12 and isogenic mutants

3.11 Pro-inflammatory cytokines such as IL-6 and TNFα mRNA expression, TNFα and chemokine IL-8 secretion from THP1 cells during infection with *H. pylori* and isogenic mutants

3.12 IRAK1 (ser376) phosphorylation and IL-1beta, IL-6, IL-18, TNFalpha and IL-8 gene expression and secretion in HEK293, HEK293-TLR2,
HEK293-TRL5 and HEK293-TRL10-HA cells during infection with *H. pylori* and isogenic mutants

3.13 IL-1 Receptor Antagonist (IL-RN) gene polymorphism among the *H. pylori* colonized patients

4.0 Discussion

4.1 Toll like receptors Expression and IRAK-1 phosphorylation during *H. pylori* infection in THP-1 cells, THP-1-DCs, HEK-293, HEK293-TRL2, HEK293 TLR5 and HEK293-TRL10 cells

4.2 Nod like receptors Expression and Functional Activation of Inflammasome for IL-1β maturation and secretion during *H. pylori* infection with THP-1 cells

4.3 Pro-inflammatory cytokine and chemokine expression and secretion in relation to TLR Expression and Signalling during *H. pylori* infection with THP-1 cells

4.4 Pro-inflammatory cytokine and chemokine expression and secretion in relation to TLR Expression and Signalling during *H. pylori* infection with HEK293, HEK293-TRL2, HEK293-TRL5 and HEK293-TRL10 cells

4.5 IL-1 Receptor Antagonist polymorphism and genotyping of *CagA, VacA, iceA1* and *A2* among a group of patients colonized with *H. pylori*

5.0 Conclusion

6.0 Bibliography