CONTENTS

CHAPTER I : INTRODUCTION

1.1 Dielectrics and Semiconductors. 1
1.2 Electrical Conductivity. 3
1.3 Polarisation of Dielectrics. 6
1.4 (A) Electrets. 8
(B) Homo charge and Hetero-charge. 10
1.5 Classification of electrets. 10
1.6 Thermo-electrets. 12
(a) Substances capable of permanent polarisation. 13
(b) Polarisation of thermo-electrets. 14
1.7 Thermo-electret studies. 15
1.8 Dielectric constant and loss angle tangent (\(\tan \delta\)). 17
1.9 Persistent Internal Polarisation. 19
1.10 Statement of Problem. 22
References. 27

CHAPTER II : ELECTRICAL CONDUCTIVITY

2.1 Introduction. 35
2.2 Conductance as a function of variables. 36
(A) Field 37
(B) Temperature. 40
(C) Pressure. 41
(D) Humidity 43
(E) Electrode material 44
(F) Thickness. 46
2.3 Available techniques of conductivity. 45
2.4 Present technique. 47
(A) Assembly for preparation of samples. 47
(B) Method of preparation of samples. 50
(C)(i) Construction of conductivity cell.
(ii) Constant of conductivity cell.
(D) Voltage Source.
(E) Temperature Control.
(F) Current measuring instrument.
(G) Circuit arrangement and current measurement.
(H) Procedure.

2.6 Details of the measurement.
(A) Variation of current with field.
(B) Variation of current with temperature.

2.6 Details of the Calculations.
(A) Activation Energy.
(B) Calculation of Power "m"
(C) Correlation Coefficient.

2.7 Results.
(A) Variation of current with field.
(B) Variation of current with temperature.
(C) Correlation Coefficient.

2.8 Discussion.

References.

CHAPTER III: THermo-ELecTricT

3.1 Introduction.
3.2 General method of thermo-electret preparation.
3.3 Preparative Parameters.
(a) Electrode material.
(b) Temperature.
(c) Thickness of the sample.
(d) Time of Polarisation.
(e) Polarising field.

3.4 Present method of preparation of thermo-electret.
(a) Assembly for the preparation of sample and thermo-electret.
(iii)

(b) High Voltage Source.
(c) Temperature control.
(d) Preparation of thermo-electret.

3.5 Preservation of thermo-electret.
3.6 General method of charge measurement.
3.7 Present method of surface charge measurement.
(a) Charge measuring electrode assembly.
(b) Lindemann electrometer.
(c) Pneumatically operated earthing switch.
(d) Portable Projector for Lindemann electrometer.
(e) Lindemann electrometer power supply.
(f) Circuit.
(g) Method of electret charge measurement.
(h) Calibration of electrometer.

3.3 Details of measurement.
(a) Dielectric - Metal contact.
(b) Electrode effect.
(c) Field and temperature effect.

3.9 Results
3.10 Discussion.

References.

CHAPTER IV : DIELECTRIC - CONSTANT

4.1 Introduction.
4.2 Dependence of dielectric constant on.
(a) Temperature.
(b) Frequency.
(c) Field.

4.3 Experimental technique for dielectric constant measurement.

4.4 Present technique for measurement of dielectric constant.
(A) Preparation of sample.
(B) Preparation of cell for dielectric constant measurement.
(C) Temperature control.
(D) Preparation of the thermo-electret.
(E) Impedance measuring bridge.
(F) Circuit arrangement and procedure for measurement of dielectric constant.

4.5 Details of measurement.
(A) Variation of dielectric constant with temperature.
(B) Variation of dielectric constant on polarisation with time.

4.6 Results.
4.7 Discussion.
References.

CHAPTER - V : PHOTO-ELECTRET

5.1 Introduction.
5.2 Duration of retention of internal polarisation in photo-electret.
5.3 Formation of the photo-electret state in dielectrics and the reciprocity law.
5.4 General methods of measuring the photo-electret charge.
5.5 Present method.
(A) Lifted Electrode Method.
5.6 Details of measurements.
5.7 Results.
5.8 Discussion.
References.

CHAPTER - VI : DISCUSSION

6.1 Introduction.
6.2 Electrical Conductivity.

Page
134
134
134
137
138
138
139
140
142
146
148
152
155
158
160
160
163
164
165
169
171
172
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>State of "Persistent Internal Polarisation"</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>(A) Thermo-electret Study.</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>(B) Photo-electret Study.</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>(C) Explanation for Polarity of surface charge.</td>
<td>182</td>
</tr>
<tr>
<td>6.4</td>
<td>Dielectric constant.</td>
<td>188</td>
</tr>
<tr>
<td>6.5</td>
<td>Correlation of different results</td>
<td>189</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions.</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>197</td>
</tr>
</tbody>
</table>