Table of contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations</td>
<td>vi</td>
</tr>
</tbody>
</table>

1: Introduction

Aims and objectives 5

2: Review of literature 6-46

2.1 Cancer 6
2.2 Lung Cancer 7
2.3 Epigenetics 13
2.3.1 Molecules that regulate epigenetic changes 14
2.3.2 Epigenetic pathways are interlinked 16
2.4 Epigenetics and Cancer 16
2.5 DNA methylation 17
2.5.1 DNA hypomethylation and cancer 18
2.5.2 Hypermethylation of promoters and cancer 18
2.5.3 Genes involved in DNA methylation 19
2.5.4 Methyl binding domain proteins (MBD) 22
2.6 Histone modification 24
2.6.1 Histone deacetylases 24
2.6.2 Histone methyltransferase 26
2.6.3 Histone methylation marks in cancer 29
2.7 TSGs affected by epigenetic alteration in lung cancer 29
2.8 Inflammation involved in genesis and advancement of cancer 32
2.9 Modeling lung cancer in mouse 38
2.10 Urethane
2.11 Chemoprevention
 2.11.1 Inositol hexaphosphate a chemopreventive agent
 2.11.2 Sulindac in cancer chemoprevention

3: Materials and Methods

3.1 Chemicals
3.2 Filters and membrane
3.3 Experimental details
 3.3.1 Animals
 3.3.2 Animal treatment
3.4 Histopathology
3.5 RNA isolation
3.6 Reverse transcription of RNA
3.7 Gene expression analysis
 3.7.1 PCR detection of mRNA
 3.7.2 Protein expression analysis (Western blotting)
3.8 DNMT enzyme activity assay
3.9 Isolation and bisulphite modification of DNA
3.10 Methylation-specific PCR (MS-PCR)
3.11 Global DNA Methylation
3.12 Immunohistochemistry (IHC)
3.13 Chromatin immuno precipitation (ChIP)
3.14 Statistical analysis

4: Results

4.1 Development of urethane induced mouse lung tumors in presence or absence of inositol hexaphosphate or sulindac
4.2 Study of epigenetic events during the course of the development of tumors
4.3 Methyl binding domain proteins (MBDs) expression in the development of lung tumors
4.4 Status of the histone modifications in the development of lung tumors
4.5 Status of global DNA methylation
4.6 Gene promoter CpG hypermethylation- A consequence of DNMT over expression
4.7 Analyses of methyl histones on TSG promoter (ChIP analysis)
4.8 Expression of tumor suppressor genes
4.9 Involvement of the mediators of inflammation in the development of urethane induced lung tumors

5: Discussion
6: Summary
7: References
8: List of publications