# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Preface</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>List of tables</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>List of figures</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>List of appendices</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

## 1. General introduction and literature review

### 1.1 Introduction

### 1.2 Objectives

### 1.3 Literature review

- 1.3.1. GS isoforms in plants
- 1.3.2. Structural and catalytic properties
- 1.3.3. Molecular characteristics
- 1.3.4. Regulation of GS isoforms by light
- 1.3.5. Regulation of GS by nitrogen status
- 1.3.6. Regulation of GS isoforms by abiotic and biotic stress
- 1.3.7. Regulation of GS isoforms by senescence
- 1.3.8. Physiological role of GS isoforms
- 1.3.9. The model plant, Rice (*Oryza sativa* L.)
- 1.3.10. The model plant, Selaginella bryopteris L.

### 1.4. Bibliography

## 2. Regulation of glutamine synthetase isoforms in two differentially drought tolerant rice (*Oryza sativa* L.) cultivars under water deficit conditions

### 2.1. Introduction

### 2.2. Materials and methods

- 2.2.1. Chemicals and reagents
- 2.2.2. Plant materials and growth conditions
- 2.2.3. Determination of RWC
- 2.2.4. Electrolyte leakage assay
- 2.2.5. Estimation of proline
- 2.2.6. Protein estimation
- 2.2.7. GS extraction and assay
- 2.2.8. Separation of GS isoforms from leaf, stem and root of rice seedlings
- 2.2.9. RT-PCR analysis of GS genes
2.2.10. Immuno blot analysis of GS isoforms

2.3. Results
2.3.1. Screening of rice cultivars for tolerance to WD stress
2.3.1.1. Effect of WD on RWC in leaves of rice cultivars
2.3.1.2. Effect of WD on proline content in leaves of rice cultivars
2.3.1.3. Effect of WD on protein content in leaves of rice cultivars
2.3.1.4. Effect of water-deficit on electrolyte leakage
2.3.2. Optimization of GS extraction and assay conditions
2.3.3. GS isoforms in leaf, stem and root of rice varieties
2.3.4. Detection and quantization of GS isoforms mRNA and protein
2.3.4.1. Standardization of RT-PCR amplification of GS isoforms
2.3.4.2. Quantification of GS isoforms transcripts in rice seedlings
2.3.4.3. Quantification of GS isoforms polypeptides in rice seedlings
2.3.5. Effect of WD on activity and expression of GS isoforms in leaf, stem and root of IR-64 and Khitish seedlings
2.3.5.1. Effect of WD on total GS, GS1 and GS2 activities in leaf, stem and root of IR-64 and Khitish seedlings
2.3.5.2. Effect of WD on expression of GS1 and GS2 mRNA in leaf, stem and root of IR-64 and Khitish seedlings
2.3.5.3. Effect of WD on expression of GS1 and GS2 polypeptide in leaf, stem and root of IR-64 and Khitish seedlings

2.4. Discussion
2.5. Bibliography

3. Studies on GS isoform in Selaginella bryopteris L. and its regulation during water deficit stress

3.1. Introduction
3.2. Materials and methods
3.2.1. Chemicals and reagent
3.2.2. Plant material
3.2.3. Determination of RWC
3.2.4. Pigments estimation
3.2.5. Proline Estimation
3.2.6. Protein Estimation
3.2.7. Ammonium Estimation
3.2.8. Separation of GS isoforms from S. bryopteris fronds
3.2.9. Separation of cytosolic and chloroplastic fraction of S. bryopteris fronds
3.2.10. Enzyme assay
3.2.10.1. Glutamine synthetase
3.2.10.2. Glutamate oxo-glutarate amino transferase (GOGAT)
3.2.10.3. Glutamate dehydrogenase (GDH Aminating)
3.2.11. Partial purification of GS from S. bryopteris fronds
3.2.12. Characterization of GS
3.2.13. SDS-PAGE analysis
3.2.14. Immunoblot analysis of GS and GDH protein
3.2.15. Bioinformatic analysis

3.3  Results

3.3.1. Determination of dehydration-rehydration kinetics of *S. bryoteris* fronds 102

3.3.2. Effect of dehydration-rehydration kinetics of *S. bryopteris* fronds on protein, proline, and ammonium contents 104

3.3.3. Optimization of GS extraction and assay condition 105

3.3.4. GS isoforms in *S. bryopteris* fronds 105

3.3.5. Partial purification of GS from *S. bryopteris* fronds 106

3.3.6. Kinetic properties of *S. bryopteris* fronds 107

3.3.7. Sequence homology between GS of *Selaginella* and other angiosperms 108

3.3.8. Effect of dehydration-rehydration on GS/GOGAT activity and expression of GS 110

3.3.9. Effect of dehydration-rehydration of *S. bryopteris* fronds on activity and expression of GDH 111

3.4. Discussion 113

3.5. Bibliography 118

General Discussion and Conclusion 124
Bibliography 131
Appendix a-d