CONTENTS

CHAPTER I: LUMINESCENCE - A GENERAL REVIEW.

1.1 INTRODUCTION

1.2 THE ELEMENTARY CONCEPTS OF LUMINESCENCE.
- (a) Definitions of luminescence.
- (b) Fluorescence and phosphorescence.
- (c) Phosphors.
- (d) Host materials.
- (e) Activators and Killers.
- (f) Fluxes.
- (g) Centers.
 - (i) Luminescence centers.
 - (ii) Killer centers.
- (h) Traps.

1.3 CLASSIFICATION OF LUMINESCENCE:
- (a) (i) Characteristic luminescence.
 - (ii) Non-characteristic luminescence.
- (b) (i) Photoluminescence.
 - (ii) Radio- luminescence.
 - (iii) Chemi- luminescence.
 - (iv) Electro-luminescence.
 - (v) Tribo-luminescence.

1.4 LUMINESCENCE EFFICIENCY:

1.5 THEORIES OF LUMINESCENCE.
- (A) Configurational Coordinate Model.
- (B) Continuous Dielectric Model.
- (C) Energy Band Model.

1.6 PROCESSES IN CRYSTALLINE PHOSPHORS.
- (a) Absorption and Excitation.
- (b) Transfer and Storage of energy.
- (c) Emission.
1.7 TRANSPORT OF ENERGY IN LUMINESCENCE SYSTEMS.

(A) Luminescence system in which absorption and emission of energy takes place in the same center.

(B) Luminescence system in which energy transport is without movement of charge carriers.

 (i) Cascade or radiative mechanism.

 (ii) Resonance or non-radiative mechanism.

 (iii) Exciton migration.

(C) Luminescence systems involving transfer of charge carriers.

 (i) Schön - Klasens Model.

 (ii) Lambe - Klick's Model.

 (iii) Williams - Prener's Model.

1.8 SOME METHODS OF STUDYING LUMINESCENCE AND ALLIED PROPERTIES:

(A) Absorption.

(B) Excitation.

(C) Emission.

(D) Decay.

(E) Thermo-luminescence.

(F) Paramagnetic Susceptibility & Resonance.

(G) Electro-luminescence.

(H) Photo-conductivity.

(I) Photo-dielectric effect.

1.9 PRESENT INVESTIGATION:

1.10 REFERENCES:
CHAPTER II: PREPARATION OF PHOSPHORS:

2.1 INTRODUCTION:

2.2 FORMS AND CLASSIFICATION OF PHOSPHORS.

(A) Forms.

(i) Powder.

(ii) Single Crystals.

(iii) Thin films.

(B) Classification of phosphors.

2.3 THE BASIC INGREDIENTS OF PHOSPHORS.

(A) Host Materials.

(B) Activators.

(C) Fluxes.

2.4 GENERAL REQUIREMENTS OF PHOSPHOR PREPARATION:

(i) Purity.

(ii) Particle size of ingredients.

(iii) Mixing of ingredients.

(iv) Size of a batch.

(v) Reaction vessels.

(vi) Furnace.

(vii) Firing time and temperature.

(viii) Atmosphere during firing.

(ix) The rate of cooling.

(x) Grinding and particle size of phosphors.

2.5 PREPARATION OF ALKALINE EARTH SULPHIDE PHOSPHORS:

PRESENT METHOD:

(A) Purification of the ingredients.

(i) Gypsum.
(iv) Carbon.
(iii) Flux.
(iv) Activators.

(B) Preparation of charge.
 (a) Compounding.
 (b) Mixing of ingredients.

(C) Firing process:

(D) Grinding and Mechanical handling.

2.6 REFERENCES:

CHAPTER III: PHOSPHORESCENCE DECAY:

3.1 INTRODUCTION:

3.2 KINETICS OF LUMINESCENCE DECAY:
 (A) Fluorescence Decay.
 (a) First order kinetics of fluorescence.
 (b) Second order kinetics.
 (B) Phosphorescence Decay.
 (i) First order kinetics.
 (ii) Second order kinetics.

3.3 SUPERPOSITION THEORIES:
 (i) Bimolecular superposition theory.
 (ii) Monomolecular superposition theory.

3.4 METHODS OF DECAY MEASUREMENTS:
 (A) Fast Decay \((t < 10^{-5} \ \text{Sec.}) \).
 (B) Slow Decay \((t > 10^{-5} \ \text{Sec.}) \).

3.5 PRESENT METHOD:
 (A) Decay apparatus.
 (B) Excitation source.
(v)

(C) Emission Measuring Device.
(D) Preliminary setting of the detector unit.
(E) Experimental Procedure.

3.6 RESULTS OF DECAY MEASUREMENTS:

(a) Decay Curves.
(b) Correlation coefficient.
(c) Decay constant.
(d) 'Peeling-off' of decay curves.
(e) Variation of Decay constant with time.
(f) Variation of intensity with activator concentration.
(g) Variation of decay constant with activator concentration.
(h) Variation of trap depth with activator concentration.

3.7 REFERENCES:

CHAPTER IV: THERMOLUMINESCENCE:

4.1 INTRODUCTION:

4.2 THEORIES OF LUMINESCENCE.

4.3 EVALUATION OF TRAP DEPTH (E).

4.4 EXPERIMENTAL METHODS:

4.5 PRESENT METHOD:

(a) Thermoluminescence Apparatus.
(b) The excitation source and arrangement for measurement of glow emission.
(c) Calibration of heater coil.
(d) Experimental Procedure.

4.6 RESULTS:

(a) Glow Curves.
(b) Trap depths.
(c) Variation of trap depth with activator concentration.
4.7 REFERENCES:

CHAPTER V: EMISSION SPECTRA:

5.1 INTRODUCTION:

5.2 GENERAL CHARACTERISTICS OF EMISSION SPECTRA:

5.3 METHODS OF MEASURING AND RECORDING EMISSION SPECTRA:

(A) Photoelectric Method.
(B) Photographic Method.

5.4 PRESENT METHOD:

(A) Spectrograph used.
(B) The details of the setting of the spectrograph.
(C) Details of photography.
(D) Source of excitation.
(E) Sample holder and the experimental arrangement for the fluorescence.
(F) Sample holder and experimental arrangement for phosphorescence spectra.

5.5 MEASUREMENT OF INTENSITY:

(a) Description of microphotometer.
(b) Method of measuring intensity.
(c) Method of calculation.

5.6 RESULTS:

(a) Fluorescence Spectra.
 (i) Effect of concentration of cerium.
 (ii) Effect of concentration of didymium.

(b) Phosphorescence spectra.

5.7 REFERENCES:
CHAPTER VI: DISCUSSIONS AND CONCLUSIONS:

6.1 INTRODUCTION:

6.2 DECAY STUDIES:

(A) Decay curves.
(B) Variation of decay constant with time.
(C) Variation of decay constant with activator concentration.
(D) Variation of trap depth with activator concentration.

6.3 THERMOLUMINESCENCE STUDIES:

(A) The glow curves.
(B) Evaluation of traps.
(C) Variation of trap depth with activator concentration.
(D) Correlation of trap depth obtained from decay and thermoluminescence studies.
(E) Retrapping.
(F) Nature of traps.

6.4 EMISSION SPECTRA:

(A) Band Emission.
(B) Line Emission.
(C) Fluorescence spectra.
(D) Phosphorescence spectra.

6.5 CONCLUSIONS:

6.6 REFERENCES:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.1</td>
<td>Composition of Charge.</td>
<td>49.</td>
</tr>
<tr>
<td>2.</td>
<td>2.2</td>
<td>Composition of Phosphors before firing.</td>
<td>50.</td>
</tr>
<tr>
<td>3.</td>
<td>3.1</td>
<td>Phosphorescence decay data, for DA-Series.</td>
<td>72.</td>
</tr>
<tr>
<td>4.</td>
<td>3.2</td>
<td>Phosphorescence decay data, for DB-Series.</td>
<td>73.</td>
</tr>
<tr>
<td>5.</td>
<td>4.1</td>
<td>Peak Temperature of glow curves at three warming rates along with trap depth for DA-Series.</td>
<td>89.</td>
</tr>
<tr>
<td>6.</td>
<td>4.2</td>
<td>Peak Temperature of glow curves at three warming rates along with trap depth for DB-Series.</td>
<td>90.</td>
</tr>
<tr>
<td>7.</td>
<td>5.1</td>
<td>Variation of Fluorescence Intensity of Di-Lines & Ce-Bands - for DA-Series.</td>
<td>110.</td>
</tr>
<tr>
<td>8.</td>
<td>5.2</td>
<td>Variation of Fluorescence Intensity of Di-Lines & Ce-Bands - for DB-Series.</td>
<td>111.</td>
</tr>
<tr>
<td>9.</td>
<td>5.3</td>
<td>Variation of Phosphorescence Intensity of Di-Lines & Ce-Bands - for DA-Series.</td>
<td>112.</td>
</tr>
<tr>
<td>10.</td>
<td>5.4</td>
<td>Variation of Phosphorescence Intensity of Di-Lines & Ce-Bands - for DB-Series.</td>
<td>113.</td>
</tr>
<tr>
<td>11.</td>
<td>6.1</td>
<td>Trap depths as observed from glow curves and the analysis of decay curves.</td>
<td>127.</td>
</tr>
<tr>
<td>12.</td>
<td>6.2</td>
<td>Wavelengths of Di (Pr$^{3+}$ + Nd$^{3+}$) lines in CaS:Ce phosphors.</td>
<td>132 (a)</td>
</tr>
</tbody>
</table>