CHAPTER -8

DISCUSSION

Nungbi (Longpi) and Oinam pot can be easily differentiated. Nungbi (Longpi) pot is black in colour, and may be characterised as black polish ware. While Oinam pot is characterised as corded grey ware.

Sir John Marshall was the first Archaeologist who reported the occurrence of fine black lustrous sherds (now called Northern Black Polished ware) at Bhita excavation in the year 1911-12 and dated it to Circa 8th century B.C. More than four hundred fifty sites in India, Afghanistan, Pakistan and Nepal have produced this ware. In India, the ware is reported from Achichatra (U.P), Atranjikhera (U.P), Allahpur (U.P), Hastinapur (U.P), Hetimpur (U.P), Besnagar (M.P), Ujjain (M.P), Chirand (Bihar), Kayatha (M.P), Purana Qila (Delhi), Rajgir (Bihar), Ropar (Punjab), Kausambi, Bharadvaja, Asrama, Jajmau, Kanauj, Kampil, Atranjikhura at the upper Ganga plain. It is also found at Tamluk in Midnapur District, Bangarh in Dinajpur, Guar in Malda, and at Prabhas Patna near the western coast in Gujarat. Thus the ware now claims a larger area than any other known wares of India.

2 Ibid: 124.
Various pottery shapes like bowl, dishes, basins, pedestalled or footed or bowl-on-stand globular body and flat base are the common features of the Northern Black Polished ware.

Raymond and Bridget Allchin (1993:215) said, “The black gloss ware commonly known as N.B.P. or Northern Black Polished Ware, the technique of the black gloss surface was apparently very similar to that of the Greek black ware, both cases depending upon the unusually fine particle size of the clay employed for the dressing. The full understanding of this surface – dressing technique has still to be worked out”.

The concept of standard NBP with a distinctive lustrous surface finish needs a revision. This glossy brilliance has also raised several enquiries as to the actual method of the production of this ware. Some of the views are discussed below:

Sana Ullah reporting twice said that the black coating contains about 13% ferrous oxide which is responsible for the black shade. The original slip was a highly ferruginous body and was applied to the surface of the pot before firing. The presence of ferrous – lime and ferrous-magnesia which being of low fusibility bring about the fusion of the black film during burning and also account for high
lustre of the specimens. He says that although Lucas has tried to prove that black colour of the pottery is due only to carbon, yet his experiments leave no doubt that ferrous silicate is also produced. Thus he holds the possibility of the deposition of carbon and some tarry matter in the pores to enhance its black colour.

In 1947-48 on the excavation report of Brahmagiri and Chandravalli published in Ancient India, No.4, Wheeler said, “The black polished ware, distinctive of the pitcircles seems to have been fired at a low temperature as it weathers much sooner than the red. This black ware of the megalithic sites of South India and the Deccan has been compared to the typical black polished ware well known from Northern Indian sites, but it should be stressed that the two wares are easily distinguishable. The Northern black ware has a fine fabric, is very well fired, has a polish giving almost a metallic lustre and is shaped on a fast wheel, while the black megalithic ware is coarser, less well fired, usually not so highly polished and is normally potted on a slow wheel”. B.B.Lal on the basis of his observation concluded that “The lustre on the surface of the ware, therefore, appears to be composed of some easily fusible material, possibly of organic origin, which undergoes incipient fusion at a low heat. The layer just below the uppermost film was in most cases, noticed to be buff or orange—yellow. The blackening of the upper most surface may, therefore, be due to some sort of post—firing
treatment, in which the pottery, still hot from the kiln, was coated with some liquid such as an oil, juice of some plant or a similar organic concoction. He further states that the exact conditions of firing and the nature of the ferruginous material employed in its manufacture still remained elusive.

According to the observation of Miss Bimson of the British Museum Laboratory, the unfired pots were dipped in a suspension of ferruginous inorganic material probably resembling a red earth and that, after firing to a temperature of 800\(^\circ\)C the kiln was sealed so that the pots are cooled in a reducing atmosphere. She further points out several differences between NBP and Greek black ware. When held near the magnet, Greek black is attracted to the magnet, whereas Indian black is relatively non-magnetic. The surface of the NBP ware differs from Greek black gloss in its behaviour when fired. The latter is consistently stable at temperature of C. 1000\(^\circ\)C, whereas the samples of the NBP ware have shown variations in their resistance to such temperature.

As regard magnetic quality of the NBP slip, the analysis of Hegde is at variance with Miss Bimson. According to him the NBP slip is magnetic. He has hinted that the pots were double fired as according to him the surface dressing was applied on baked clay. The frequent peeling of the slip and the defeats like
razing suggest that the pots may have been fired twice. According to Miss Richter, Athenian vases were also fired under oxidizing, reducing and again re-oxidizing conditions to achieve the lustrous surface. B.K. Thapar also hints that the peeling of the slip indicate that pots may have been fired more than once. But his analysis was again confined to only standard variety of NBP having black colour and lustrous body.

The analysis of the Archaeological Laboratory of the Banaras Hindu University carried out by H.C. Bhardwaj suggest that black colour of the slip is materially on account of carbon and their experiments and observations do not substantiate the presence of magnetite or ferrous silicate. Views of Lal mentioning the use of organic that will deposit carbon on charring need attention. However, in view of the presence of a detachable clayey slip, post-firing application of organic liquids looks doubtful. This slip might have been obtained by the application of well-levigated emulsion of refined clay and organic liquids (say plant juices) over the dried pots. After the slip was dry, the pots were fired under reducing condition. The organic matter in the slip carbonized, without burning out, resulting in a uniform lustrous black surface.
Pulling all this in mind, the study on Nungbi (Longpi) pot shows that it is purely handmade. The pots are globular body jar and low carinated pot with widely opened mouth, flaring rim, rounded lip. The decorations are incised in different designs, applique, circular punctation mark. The pots are dried on the fire hearth after shaping it properly. When the pots are well dried, it is fired for about one and half-hour. Once the fire started it should go without extinguishing until the pot is completely baked. The baked pot turn into ash colour. While the pots are still hot they are rubbed with dried pine leaves, which produces smoke and turns the pot into black. The next step is rubbing with green leaves of Machini (Quercus species) which give lustre to the pots.

Cord marked pottery is found in Kyapadaung of Burma, Huangho and Yangtse valley of China, Chande cave B, Thailand. In India the Neolithic corded ware are found only in few sites. The cord marked pottery is found at Daojali Hading, North Cachar Hills, Dibru valley and Sarutaru Kamrup District, Assam. Beyond North East India corded wares are also reported from Mahagara and Panchah, both in Allahabad District. The review of Neolithic culture of China and South East Asia suggests that pure corded ware always preceded the culture that was characterised by pottery decorated with painting, incising and net impressions. In Manipur cord marked pottery is also found in all the four Neolithic
sites Nongpok Keithelmanbi, Napachik, Laimanai and Phunan and of which Nongpok Keithelmanbi material is the oldest dating to 4460 ± 120 B.P.

The pottery found at Nongpok Keithelmanbi locality – 1, Senapati District is illfired and handmade. The cord-marks are found on the outer surface in linear and criss-cross patterns. Light red and reddish brown are the dominant colour. The thickness of the sherd ranges from 2 mm to 8 mm. But the most common being used is 4 mm to 5 mm. No complete pot has been recovered from the site; however, from the rim fragments the shapes appear to include shallow bowl with flat curved base and globular pot with constricted neck. The cored ware from Napachik Bishnupur district and Laimanai, Thoubal district is characterised by the hand-made tripod wares. A TL-date of a cord-marked sherd from Napachik site gives the age of 1450 B.C. from the tripod ware Neolithic culture in Manipur. The cordmarks are present in linear and criss-cross patterns. At Laimanai site linear pattern impressions are also found on the tripod legs. Reddish brown is the dominant colour of the pottery, though there are a few grey, dark grey and whitish colours at the Napachik site. The thickness of the pottery wall is not uniform; it ranges from 2 mm to 7 mm. The tripod legs are solid and made separately to be luted at the base of the vessel. These are of various forms of long conical, short with tapered, slanting and hollow base and flattish etc.

At Phunan site the cord-marked pottery is found less in numbers than other forms of pottery decorated with incised marks, applique and circular impressions. The cord-marks are present in linear and criss-cross patterns. The pots are all hand-made and ill-fired.

Cord-marked pottery making is a living tradition among the Oinam (Poumai) Mao in the Senapati District of Manipur. They made pottery with a very crude technique of moulding and hand-beater methods. The pottery of Oinam has mostly elongated body form with bevelled labial flanged lip. Their pots are decorated with cord-marks. Considering their simple technique, Oinam pottery industry is still in the Neolithic stage. But typological comparison of the pottery forms with those of the archaeological remains cannot be made as no complete pot has so far been recovered from any prehistoric sites.

The cord-marked pottery from the archaeological sites of Manipur cannot be compared with those of the modern, except in certain process of making technology. According to O.K. Singh (1999), the presence of the cord marks on the outer surface of the pottery is the clear evidence of using cord wrapped paddles in the final shaping of the pottery among both the prehistoric and modern potters. But it is not clearly understood whether the roughout of the prehistoric pottery is

also made by moulding on a rod as done by Oinam potters. The shape of the pottery, particularly the rim and lip parts of the prehistoric pottery have no similarity with those of the Oinam modern pottery. Thus it is very difficult to say whether the modern Oinam potters belong to the same ethnic group of people with those of the prehistoric cord-marked potters and continued the same pottery technology or both have different origins; and the cord marking of the pottery is the only chance similarity. But it is clear that the village of the Oinam potters is in isolation for quite long time, which helps in the continuation of their simple technology till the present day. They still practiced shifting cultivation and weave cloth from the fibers extracted from the wild plants in tension loin looms. The whorl that is used in spinning thread is also made of stone. Considering the isolation and their simple technology Singh (1999) suggested that there is reason to suppose the probability of continuing the Neolithic cord-marked pottery technology among the Oinam pottery.

8 Ibid: 63.