Chapter 1

INTRODUCTION

1.1 Metal-Insulator-Metal Capacitors

William Shockley, John Bardeen and Walter Brattain demonstrated the first semiconductor transistor in AT&T labs [Shockley, 1947]. After a decade, Jack Kilby of Texas Instruments invented the first Integrate Circuit (IC) [Kilby, 1959]. These inventions, various other experts and their innovations brought revolution in semiconductor industries. Moore’s law has given lots of challenges to IC technologists, particularly in scaling of devices to obtain better performance at low cost. In 21st century, the remarkable developments have taken place in micro and nano electronic devices for digital, analog and mixed signal (AMS) applications.

Figure 1.1: System on Chip (SoC) for smart phone
Wireless communication and computational technologies are integrated into a single chip for the smart phones and wireless personal area networks (WPAN) applications. Such technologies are collectively called system-on-chip (SoC). Fig. 1.1 shows one possible SoC for smart phone. This needs denser IC chips with many independent functionalities, such as digital signal processor, image processor, memory, analog/RF systems and networking. Few fundamental blocks/circuits essential here, like modulator systems, analog circuits, analog-digital circuits or mixed signal circuits. These circuits need high precision elements to drive with high frequency signals. Some of the driving factors of IC technologies are frequency of operation, power consumption, material, size and cost. While considering of these factors and standard specifications, scaling of transistor alone can not improve performance-to-cost ratio.

“Capacitor” is a significant and useful passive element in various analog and mixed signal (AMS) applications. Capacitors are often used for DC isolation, coupling, decoupling, and bypass in analog circuits. Few applications are shown in Fig. 1.2. In these circuits, various sizes of capacitors take a large portion of IC area. Miniaturization of capacitors with high capacitance and low leakage has become a challenge for IC fabrication. Metal-Oxide-Semiconductor (MOS) capacitors have been employed for many
years due to the advantages like native MOSFET fabrication method and easy to integrate. However, it suffers with undesirable variation in capacitance due to charge accumulation at oxide-semiconductor and depletion effects at polysilicon electrodes. This results poor quality factor and large sheet resistance. These factors in MOS capacitor are not acceptable for high precision processing techniques [Ng et al., 2005]. Due to this, nanostructured parallel plate capacitors with metal electrodes have become popular, later it has been called as “Metal-Insulator-Metal (MIM) capacitors”.

MIM capacitors hold various advantages compared to MOS capacitors for DRAM and AMS applications. Fig. 1. 3 (a) and (b) show the field distribution of MOS and MIM capacitors respectively. The field distribution in MIM capacitor is confined within dielectric layer. Therefore, the formation of capacitance for applied potential does not depend on substrate. This indicates that MIM capacitor can be fabricated on any substrate, such as semiconductor, plastic or flexible substrates. Typical capacitance-voltage (CV)
characteristics of MOS and MIM capacitors are shown in Fig 1. 3 (c) and 1. 3 (d), respectively. Unlike MOS capacitors, the variation of capacitance due to applied voltage is very low which is suitable for precision AMS applications [Ng et al., 2005]. International Technology Roadmap for Semiconductors (ITRS) has predicted the future challenges and recommendations on MIM capacitors for DRAM and AMS applications [ITRS, 2011]. To achieve those challenges, many reports have been presented on fabrication of high-k dielectric MIM capacitors using various dielectric deposition techniques. It is observed that the performance of MIM capacitors is highly affected by structural defects and polarization [Gonon and Vallae, 2007].

“Anodization” is acknowledged as a high quality oxidation technique to produce low defect metal oxide thin films. The ionic polarization is also improved for anodic metal oxides [Kosjuk and Odynets, 1997]. However, fabrication of nanostructured MIM capacitors using anodization is rarely reported [Hourdakis and Nassiopoulou, 2010, Sedghi et al., 2011]. In this thesis, we have presented the fabrication of nanostructured high performance MIM capacitors using anodization of various high-k dielectric materials, such as alumina, titania and their bilayer stack. The effect of fabrication process parameters, such as electrolyte, anodization voltage and temperature, on the structural and electrical properties of MIM capacitors are studied in detail. This thesis suggests the anodic oxidation technique for the fabrication of future nanoelectronic ICs for AMS and DRAM applications.

1.2 Performance parameters of MIM Capacitors

The performance of the MIM capacitor can be evaluated by many parameters, such as capacitance density, leakage current density, voltage nonlinearity, breakdown field, dielectric relaxation, dependence of capacitance with frequency and reliability. The minimum and maximum values of these parameters are limited based on the applications. For example, the dependence of capacitance with voltage in a MIM capacitor is acceptable
in DRAM circuit, but that is severely constrained in analog or mixed signal applications. However, the leakage current density is limited to almost same as \(10nA/cm^2\) for both the applications. The leakage current density should be extremely low for blocking capacitors, but decoupling capacitors can be leaky. In this section, the performance parameters of MIM capacitors are reviewed with short notes.

1.2.1 Capacitance density

Integrated MIM capacitors are planar parallel plate capacitors. Its capacitance density can be expressed using the well known equation,

\[
\frac{C}{A} = \frac{\varepsilon_0 \varepsilon_r}{d}
\]

(1.2.1)

where \(C\) and \(A\) are capacitance and electrode area, respectively. \(\varepsilon_0\), \(\varepsilon_r\) and \(d\) are free space dielectric constant, material dielectric constant and thickness of dielectric layer, respectively. Since all IC designs have scaled to micrometer level, the capacitance density is preferred with unit of “\(fF/\mu m^2\)”. \(\varepsilon_r\) is also represented as \(k\) elsewhere. It is clear that the capacitance density is directly proportional to dielectric constant and inversely proportional to dielectric thickness. In this regard, many high-\(k\) materials have been introduced in MIM capacitors, whose dielectric constant is higher than that of \(SiO_2\) \((k = 3.9)\). On the other hand, thickness of dielectric layer \(d\) should be as lower as possible which depends on dielectric deposition method and acceptable leakage current density.

High-\(k\) dielectric materials such as \(Al_2O_3\), \(HfO_2\), and \(Ta_2O_5\) have been used in MIM capacitors which show high capacitance density with good reliability and low leakage current density [Mondon and Blonkowski, 2003, Lee et al., 2003, Be’cu et al., 2006, Cheng et al., 2008]. Ferroelectric materials show several orders of dielectric constant than paraelectrics. \(BaTiO_3\), \(Br_xSr_{1-x}TiO_3\) and other ferroelectric materials have also been employed recently [Ulrich and Schaper, 2000, Kaynak et al., 2011]. It has been found that the crystalline properties, grain size, processing temperature are largely affecting the quality and dielectric constant of materials.
1.2.2 Voltage linearity

In AMS applications, the each swing of signal (peak-to-peak) is discretized by 1000 or more levels. In such cases, a small change in capacitance due to temperature or applied voltage may lead to error in many calculations. This sensitivity to voltage is measured using voltage coefficient of capacitance (VCC) [Onge et al., 1992],

\[
VCC = \left[\frac{C(V) - C_0}{C_0} \right] \times 10^6 \text{ (ppm/V)}
\]

(1.2.2)

where \(C_0 \) is capacitance measured at zero voltage. For example, Fig. 1. 4 shows the calculated VCC from measured capacitance-voltage (CV) characteristics of MIM capacitance with Al\(_2\)O\(_3\) dielectrics [Hourdakis and Nasiopoulou, 2010]. In most of the cases, the relation of VCC with voltage is parabolic in nature. Such parabolic characteristics are modeled using the empirical relation,

\[
C(V) = C_0 (\alpha V^2 + \beta V + 1)
\]

where \(\alpha \) and \(\beta \) are quadratic and linear coefficients of capacitance with units \(\text{ppm/V}^2 \) and \(\text{ppm/V} \) respectively. These parameters are extracted by fitting empirical equation with measured CV data. Quadratic coefficient is positive for many materials and negative for
few ferroelectrics & SiO$_2$ [Phung et al., 2011, Kim et al., 2004]. The sign of α depends on density of induced and permanent dipoles in dielectrics [Phung et al., 2011]. Modeling and origin of quadratic coefficient are explained in Chapter-6.

For AMS applications, the challenge lies in reducing the VCC value to less than $100\, ppm/V^2$ [ITRS, 2011]. It has been found in many reports that the VCC is largely depending on polarization, thickness of dielectric layer, atomic arrangement, defect density, temperature and signal frequency [Phung et al., 2011, Gonon and Vallae, 2007] . Gonon et al reported the modeling of VCC as a function of frequency and trap density based on electrode polarization mechanism [Gonon and Vallae, 2007]. It was observed that the dependence of capacitance in MIM capacitor is due to field activated mobility or hopping of charges with polarization [Gonon and Vallae, 2007]. The model specifies the VCC as,

$$\frac{\Delta C}{C_0} \propto \frac{\sigma_0^{2n}}{\omega^{2n}}$$

where, ΔC is the change in capacitance with voltage and C_0 is capacitance at zero bias. It shows that the VCC decreases with frequency which was confirmed with measured data [Gonon and Vallae, 2007]. It also indicates that the high conductance dielectrics may get high VCC which is influenced by defect density in dielectrics.

1.2.3 Frequency dependence

Frequency dependence of capacitance is an useful tool to analyze the polarization, structural defect profile and dielectric relaxation in dielectrics. When an AC signal is applied to MIM capacitor, the dipoles of dielectric material orient according to the positive and negative half cycles. This rotation or polarization with electric field direction is a mechanical phenomenon which can not follow the high frequency electrical signal. Thus, the polarization and polarizability of material reduces. This causes reduction in dielectric constant or capacitance with increase in frequency, such effect is referred as frequency dependence of capacitance (FDC). The atomic arrangement and defect profile of dielectric
material are influencing the polarization. Therefore, the material and quality of fabrication technology decide the rate of reduction of capacitance with frequency. For example, the thermally oxidized Al$_2$O$_3$ and AlTiO$_x$ MIM capacitors exhibit different rate of reduction in capacitance for the increase in frequency [Chen et al., 2002], shown in Fig. 1.5. Capacitance of AlTiO$_x$ MIM capacitor shows fast reduction of capacitance as frequency increases which is the result of high density of defects/traps and low time constant of traps available at the metal-to-oxide interface [Chen et al., 2002].

Fig. 1.6 shows the FDC characteristics of various paraelectric and ferroelectric materials. Ferroelectric materials show a faster degradation of capacitance with frequency
compared to paraelectric materials. This is due to high trap density and grain size of ferroelectrics which are not suitable for AMS application. However, the ferroelectrics can show a high dielectric constant even at 1GHz, which can be useful for memory applications.

MIM capacitors should hold a very low dielectric loss and low series resistance. In most of the fabrication technologies, the metal ions of electrode are migrating into dielectric layer during very high temperature metalization or oxidation. This intern reduces the quality and reliability of dielectric material. This needs a low contact resistance interconnects, desirably short. In recent works, many researchers have shown interests on copper/low-k dielectric contacts which offers a ultra low series resistance and provides good integration with silicon/GaAs technologies [M. Armacost and Stein, 2000, C. H. Ng and Chu, 2002]. These electrodes stop the migration of metal-ions into dielectric layer which further improve the reliability [C. H. Ng and Chu, 2002]. These low-k contacts also reduces parasitic capacitance with nearby metal contacts.

1.2.4 Leakage current density

Leakage current density is one of the most important performance parameters of MIM capacitors. Indeed, the suppression of leakage is one of the most important interest of this thesis. It is proved, experimentally and mathematically, that the leakage current density is higher at high-k materials due to low Schottky barrier height and low effective barrier thickness [Mise et al., 2010].

Four leakage mechanisms in dielectrics are reported so far, namely Schottky emission (SE), Poole-Frenkel (PF) emission, Trap assisted tunneling (TAT), and Poole-Frenkel saturation (PFS). Each mechanism dominates other at various range of applied voltage and trap distribution in dielectrics. Fig. 1. 7 shows the leakage mechanisms in anodic alumina MIM capacitor. Higher slope at very low voltage indicates the schottky thermionic emission of electrons to the unoccupied defect or trap states near metal-insulator interface. Low field current density is dominated by TAT, which depends on temperature, defect density and trap
well depth. PF emission occurs at high field which is due to the trapped electrons of defect states are enhanced to conduction states in bulk dielectrics. Poole-Frankel saturation is observed after the 2nd knee point. Trap barrier height is reduced to zero for voltages above 2nd knee point, thus the charged (Coulombic) traps have no effect on the carrier transport [Southwick III et al., 2010].

Schottky Emission

The transmission of charge carriers across the metal-insulator barrier for the applied field is referred as Schottky emission (SE). Fig. 1. 8 shows the conduction band edge of metal-insulator interface at equilibrium ($E = 0$) and applied potential ($E > 0$). At higher applied electric field, the bending of conduction band takes place which is referred as force induced...
barrier bending [Lenzlinger and Snow, 1969]. The reduction of band edge is given as \(\Delta \phi = q \sqrt{\frac{4E}{\pi \varepsilon}} \). This activity of electric field leads to thermionic emission of electron from metal electrode to unoccupied interface traps at insulator. The emission current is generalized from Richardson-Schottky equation,

\[
J_{SE} = \frac{4\pi m^*}{h^3} (k_B T)^2 \exp\left[-\frac{(\phi_0 - \beta_{SE} \sqrt{E})}{k_B T}\right]
\]

(1.2.4)

here, barrier height \(\phi_0 = \phi_m - \chi_e \) with \(\phi_m \) maximum barrier height and \(\chi_e \) electron affinity and \(\beta_{SE} = \sqrt{\frac{4E}{\pi \varepsilon}} \). The activation energy \(\phi_0 - \beta_{SE} \sqrt{E} \) is largely affected by dielectric constant of insulator. As dielectric constant increases, the barrier height decrease and the slope of bending is fastened. This leads to large leakage for high-\(k \) dielectrics.

Poole-Frenkel emission

Poole-Frenkel (PF) emission is similar to SE mechanism, both are results of band lowering for the applied field. While SE is associated with metal-insulator thermionic transition, the PF is carrier emission from trap to trap at bulk. Fig. 1. 9 show the energy band diagram of traps, where trap-1 is neutral/positive which is filled with charges. This trap can not take charges due to coulombic potential by filled states, where as trap-2 can occupy charges.

The conduction band bends for the applied field which makes the energy difference of \(\Delta \phi_{PF} \) between traps. This energy difference supports the emission of carriers from filled
traps to unfilled traps takes place at high applied field. This emission is called PF emission. This similarity with SE mechanism used to model the $\Delta \phi_{PF}$ as

$$\Delta \phi_{PF} = q \sqrt{\frac{qE}{\pi \epsilon}}$$

The difference between the SE and PF equation is the denominator 4 inside the square root. If the trap to trap distance is z, then the distance between trap of metal to trap of insulator is $2z$ due to the image effect of metal. This is explained in inset of Fig. 1. 10. With this, the PF emission can be modeled as,

$$J_{PF} = qN_C \exp \left[-\frac{(\phi_{SE} - \beta_{PF}\sqrt{E})}{k_BT}\right]$$

where N_C is free carrier or trap concentration in insulator and $\beta_{PF} = \Delta \phi_{PF}/\sqrt{E}$. Since the thermal energy is largely affecting the energy states of traps, the PF emission is further enhanced by temperature.

Trap assisted tunneling (TAT)

The inter-trap tunneling is classified into two based on the energy state E of the electron with respect to trap energy E_D, namely TAT and PF emission mechanisms. Trap assisted tunneling rate is expressed with p number of phonon with energy $\hbar \omega$. According to Ridley [Ridley, 1978], the rate of tunneling and current density are,

$$T_{DD} = \frac{\pi}{\hbar^2 \omega} \times \exp \left[-S(2n + 1) - \frac{p\hbar \omega}{2k_BT}\right]$$

$$J_{TAT} = A_T N_t T_{DD} \exp \left[(qV - \phi_1 + \phi_t)/k_BT\right]$$

here the phonon occupation number is $n = \left[\exp \left(\frac{\hbar \omega}{k_BT}\right) - 1\right]^{-1}$ and S is Huang–Rhys factor [Ridley, 1978]. The 3D TAT is presented by Hartke [Hartke, 1968] which reports useful approximations in calculation of direct tunneling probability.
1.2.5 Dielectric relaxation and Dielectric reliability

Dielectric relaxation (DR) in MIM capacitors is one the error source for mixed signal ICs, particularly it attacks the A/D converters [Ning et al., 2008]. Dielectric relaxation refers the time dependent trapping and releasing of charges/carriers in defect of dielectrics. Polarization of the trapped charges occurs during relaxation for the changes in applied voltage. This leads to time dependent current variations in MIM capacitor. Such mechanism is also referred as memory effect [Ning et al., 2008]. This time dependent charge transfer affects the VCC of capacitors and disturbs the AMS system.

Reliability is a statistical information about the device performance under certain real-time conditions, such as electrical, temperature and mechanical stresses. In MIM capacitor, the reliability is based on the electrical stress with time, voltage and temperature. It specifies the life time of MIM capacitor under continues time electrical stress. To measure this parameter, the leakage current density of test device is measured at an applied voltage for period of time, say 10^5 second at 20V. This applied electrical stress creates new traps in dielectric layer which changes the leakage current, this is called stress induced leakage current (SILC). The newly created traps form a leaky path which results in breakdown. The time of breakdown (TBD) can be measured at various high voltages. A
typical TBD characteristics of \(\text{Ta}_2\text{O}_5 \) MIM capacitor is shown in Fig. 10 (b) [Sedghi et al., 2011]. This capacitor shows a high reliability which shall breakdown after 10 years if 1V is applied continuously.

1.3 Thesis Motivation and Outline

Motivation of the thesis

MIM capacitors are one of the attractive passive components for analog, mixed signal and memory applications. However, they take a large area in ICs. International Technology Roadmap for Semiconductors (ITRS) has already recommended about the miniaturization of MIM capacitors. High capacitance with small electrode area can be achieved using high permittivity dielectric materials. ITRS has predicted that MIM capacitors should hold a high capacitance density of \(> 5fF/\mu m^2 \), low voltage linearity of \(< 100 \text{ppm}/V^2 \) and low leakage current density of \(< 10nA/cm^2 \) by the year 2015. In this regard, many works were carried out over the last decade with various high-\(k \) dielectrics. However, many of them are facing problems with structural defects, interface traps and poor polarization process due to limitations of fabrication process. From literature review presented in Chapter-2, the primary qualities required for the dielectric layer of MIM capacitors are listed below:

1. Low defect density
2. Low fabrication temperature
3. Crystalline dielectric layer
4. Good electrical and thermal stability
5. Low fabrication cost

We used anodization technique to fabricate MIM capacitors to meet these requirements. Anodization is widely accepted as low defect oxidation method which yield high quality metal oxides. It results two structures, namely porous and barrier type anodic oxides, based
on the electrolyte used. It is observed from the literature survey that the barrier type anodic oxides are having potential to solve these issues. By keeping these observations in mind, the objectives of the thesis are set. The motivations of this thesis are:

• to fabricate MIM capacitors using anodization technique to achieve a high capacitance density of $> 5fF/\mu m^2$ and low leakage current density of $< 10nA/cm^2$ with low voltage linearity according to ITRS recommendations.

• to study the polarization and conduction mechanisms involved in the electrical properties of anodic MIM capacitors

• to model the CV characteristics of high-k MIM capacitors and identify the origin of nonlinearities.

Thesis Outline

In this thesis, Chapter-2 presents the detailed review on recent fabrication trends of MIM capacitors. It also presents the requirement and challenges in preparation and characterization of dielectric materials.

In Chapter-3, the fabrication of alumina MIM capacitors using anodization technique is discussed in details. It also presents the structural and electrical properties through various characterization tools. Conduction mechanism, reliability and frequency dependency of capacitance are reported in detail.

Fabrication of anodic titania MIM capacitors is discussed in detail in Chapter-4. The anodic titania offers a high performance and high capacitance MIM capacitor. The crystalline property and nucleation process are discussed in detail with electrical properties.

Chapter 5 presents the fabrication of anodic TiO$_2$/Al$_2$O$_3$ MIM capacitors. It also specifies the structural and electrical properties in details, such as crystalline, nucleation, capacitance and leakage characteristics. Effect of electrolyte on the performance of titania MIM capacitors is studied with structural and electrical properties.
Modeling of capacitance-voltage characteristics for single and multilayer MIM capacitors is presented in Chapter-6. This explains the VCC, FDC characteristics dependence with voltage and predicts the origin of nonlinearities in formation of capacitance. A detailed summary of anodic oxides MIM capacitors and conclusions are made in Chapter 6.