1.1 Experimental observations in dusty plasmas for (a) Blobs and bubbles by Schwabe et al. [2], (b) Dust void and formation of vortices by Nefedov et al. [3], (c) Dust solitary wave propagation by Pintu et al. [4], (d) Mach cones observed by Melzer et al. [5], (e) Excitation of dust acoustic waves from Barken et al. [6] and (f) 3-D dust crystal formation by Pieper et al. [7]. .. 12

3.1 (a) A small amplitude sinusoidal DA perturbation (linear regime) in velocity has been evolved in time. (b) The linear dispersion relation plotted numerically (stars) and analytically (line). 30

3.2 (a) The numerical solutions of Eqs. (3.11-3.12) obtained by shooting scheme illustrating the conventional Soliton solution and (b) Cusp structures at the wave breaking point for the dusty plasma system. 33

3.3 (a) Exact solutions of Eq. (3.11), (b) A comparison between exact solutions (filled circles) and KdV soliton structure (*), (c) The matching of exact localized solutions (red dashed line) with KdV soliton solutions (solid blue line) in low amplitude limit and (d) distinction between the two at high amplitudes. 34

3.4 Evolution and collision of low amplitude exact stationary localized solutions with time in different subplots. 36

3.5 Evolution and collision of high amplitude exact stationary localized solutions with time in different subplots. 37
3.6 Emergence of soliton and cusp soliton solutions from an initial Gaussian density pulse (subplot (a) at $t = 0$). The pulse generates two oppositely propagating similar structures as shown in (b) for $t = 9.817$. The evolution of right going pulse has been shown in (c) and (d) at $t = 24.54$ and $t = 61.36$ respectively. 38

3.7 The plot of density n (green solid line), velocity v (dot dashed green line) and potential ϕ (blue dashed line) for the cusp solutions observed finally in Fig. 3.6(d). The inset shows the expanded form of the density profile of the structure. 39

3.8 The evolution of an initial Gaussian density pulse for the case of finite dust temperature. 40

3.9 The evolution of exact solutions of Fig. 3.2 used as initial conditions of (4.1) - (4.5) has been shown. The subplot (a) shows the evolution of density profile for the initial condition of regular soliton of Fig. 3.2 and subplot (b) and (c) show the evolution of density and velocity profiles for the Cusp solution. The structures from left to right correspond to $t = 0.0$, $t = 6.135$, $t = 12.27$ and $t = 18.41$ respectively. 42

3.10 Evolution of a sinusoidal wave train perturbation for cold dust case. 43

3.11 The evolution for sinusoidal perturbation for the case of finite temperature dusty plasma system. 44
4.1 Linear Dispersion relation for the three cases of subplot (a) for $\tau_m =
eta^* = 0$, subplot(b) for $\omega \tau_m \gg 1$, subplot(c) for $\omega \tau_m < 1$ (real part of frequency) and subplot(d) for $\omega \tau_m < 1$ (imaginary part of frequency). The solid line shows the analytical curve and the * symbols have been obtained from the numerical simulation. The other parameters are $\alpha = 0.1, \mu_e = 0.1, \mu_i = 1 + \mu_e$ and $\sigma_i = 1.0$.

4.2 Schematic view of time evolution of solution (4.29) of the Hunter Saxton equation for the conservative and dissipative cases (redrawn from [8]). ... 57

4.3 Cartoon picture showing energy conservation mechanism in Hunter-Saxton equation. ... 58

4.4 Form of potential energy ‘bowl’ and zero energy ‘particle’ orbit corresponding to a cuspon solution. 62

4.5 Evolution of localized (Gaussian) pulse with Eq. (4.25) valid for the strongly coupled dusty plasma. The parameter η^*/τ_m is chosen to be unity for simulation. 63

5.1 The equilibrium dust shear velocity profiles 73

5.2 Figure shows linear growth for $\alpha = 1$ for the quasineutral case (dashed line) and with dispersive correction due to $\nabla^2 \phi_1$ (shown by circles). The other parameters are $V_0 = 1, \mu_e = 0.1, \mu_i = 1 + \mu_e$ with step shear flow profile. 76

5.3 The plot of γ/V_0 (where γ is the linear growth rate) as a function of $k_y \epsilon$ for a tangent hyperbolic shear flow profile 80
5.4 Plot of the eigenvector v_{1x} as a function of x has been shown. The subplot (a) is for $k_y = 0.5334$. the solid, dot-dashed and dashed lines represent $\alpha = 50$, $\alpha = 100$ and $\alpha = \infty$ respectively. Subplot (b) shows the eigenfunctions for the maximally growing mode for $\alpha = 50$, $\alpha = 100$ and $\alpha = \infty$ by solid, dot- dash and dashed lines respectively. ... 82

5.5 Plot of eigenfunction v_{1x} as a function of x for the quasineutral case (solid line) and the one with dispersive corrections arising from $\nabla^2 \phi_1$ (dashed lines) for $\alpha = 1$ and $k_y = 1$. ... 84

5.6 A schematic cartoon illustrating the physical mechanism of the KH instability. .. 86

5.7 The evolution of perturbed kinetic energy $\log(\tilde{E})$ with time for KH instability in weakly coupled dusty plasma medium. 90

5.8 The various subplots show the vorticity contours at various times obtained from numerical simulation of the incompressible fluid system. At $t = 3.404$ the flow is in the linear growth regime of the KH instability, at $t = 15.77$ the system is in the first saturated nonlinear regime, at $t = 27.47$ the vortices have just started to merge. 91

5.9 The evolution of vorticity contours for the incompressible case for times when the two distinct vorticity patches are about to merge $t = 29.89$, and at other times $t = 34.30, 36.50, 38.71$ the vortex has already merged and the various stages of its rotation has been depicted. .. 92
5.10 The various subplots show the vorticity contours at different times obtained from numerical simulation of compressible dust fluid. The subplot at \(t = 14.85 \) shows the linear regime of evolution, while the anisotropy of vortex structures in flow direction (y-axis) and direction of flow discontinuity is shown at times \(t = 24.999 \) and 34.226. .. 94

5.11 The subplots show the evolution of vorticity contours for compressible and dispersive dust fluid with parameters same as in Fig. 5.10. The subplot at \(t = 54.191 \) shows the start of merger of vortices while the vortex coalescing is observed at advance times \(t = 69.393 \) and 81.899. .. 95

5.12 The subplots (a) and (b) show the evolution of the average profile \(\bar{v}_y = \int v_y dy / L_y \) for the incompressible and the compressible cases respectively. The solid, dashed and the dash dot plots show the profile at \(t = 0 \) (original), \(t = 9.626 \) (first saturation regime) and \(t = 34.303 \) (second saturated regime). Their respective fitted shear width also shown by horizontal lines with respective line styles(i.e. solid, dashed and the dash dot lines for \(t = 0 \), \(t = 9.626 \) and \(t = 34.303 \) respectively). .. 97

6.1 Growth rate of local instability for visco-elastic fluids. The equilibrium flow parameters are \(v_0 = 0.5, v_0' = 0.8 \) and \(v_0'' = 0.8 \). The strong coupling parameters are chosen as \(\tau_m = 10 \) and \(\eta = 0.5 \). 106
6.2 Dispersion relation for Eq. (6.9) with finite \(v'_{y0} \) parameter while other parameters are \(\eta = 0.1, \tau_m = 20 \) for subplot (a) and (b) while \(\eta = 10, \tau_m = 20 \) for subplot (c) and (d). \(v'_{y0} \) is taken to be zero. For all subplots, \(v'_{y0} \) is 0, 0.4 and 0.8 represented by circle, star and square respectively. .. 107

6.3 The scaled growth rate \(\gamma/V_0 \) Vs \(k_y \epsilon \). The smooth line (black) represents the scaled growth rate of incompressible dust fluid and rest are all compressible cases with Mach no of 0.707 with circles(red) for weakly coupled dust fluid while square(magenta) and stars(blue) represents case of \(\eta = 2 \) and \(\eta = 5 \) respectively for strongly coupled dust fluid. The value of \(\tau_m \) is kept fix at 20 for these strong coupling cases. The other parameters are \(V_0 = 5 \) and \(\epsilon = 0.5 \) (shear width as defined in Eq. (6.12)) .. 109

6.4 The scaled growth rate \(\gamma/V_0 \) Vs \(k_y \epsilon \) for fixed value of \(\eta = 0.5 \) and various values of \(\tau_m = 0 \) (diamond), \(\tau_m = 2 \) (square), \(\tau_m = 8 \) (star), \(\tau_m = 12 \) (dot) and \(\tau_m = 100 \) (x mark). The red circles show the case of weakly coupled dust fluid. The other common parameters are \(V_0 = 5, \epsilon = 0.5 \) and mach no 0.707. 110

6.5 The Perturbed kinetic energy(log scale) Vs. time for the strong coupling dust fluid. \(\eta = 5 \) and \(\tau_m = 20 \) has been choosen for this case. Other parameters in simulation are same as Fig. (6.3). 111

6.6 Nonlinear evolution of vorticity contours at different times for parameter values \(\eta = 5, \tau_m = 20 \) and mach no 0.707 for this case. Other simluation parameters are \(V_0 = 5 \) and \(\epsilon = 0.5 \). Quasineutrality has been taken under consideration. 113
6.7 Nonlinear evolution of divergence of velocity field contours at different times for parameter values \(\eta = 5, \tau_m = 20 \) and mach no. 0.707 for this case. Other parameters in simulation are \(V_0 = 5 \) and \(\epsilon = 0.5 \). Quasineutrality has been taken under consideration.

6.8 Transverse wave propagation of \(k_y = 0.6382 \) mode for the initial flow profile Eq. (6.15). The other parameters of simulation are \(V_0 = 1e - 3, \eta = 5 \) and \(\tau_m = 100 \).

6.9 The analytical dispersion relation (blue line) Eq. (6.7) with numerical dispersion relation (red circle) for transverse shear waves in viscoelastic fluids with large solid like properties.

6.10 Vorticity of a initial flow as a transverse perturbation in velocity as given by Eq. (6.15). The parameters are \(V_1 = 1e - 3, \eta = 5 \) and \(\tau_m = 100 \) and the perturbation wave number correspond to two mode numbers \((K_y = 0.6382) \) in the system.

6.11 Vorticity of a initial flow as a transverse perturbation in velocity as given by Eq. (6.15). The parameters are \(V_1 = 2.0, \eta = 5 \) and \(\tau_m = 100 \) and the perturbation wave number correspond to two mode numbers \((K_y = 0.6382) \) in the system.

7.1 Evolution of phase randomized velocity potential for incompressible hydrodynamic fluids. The inverse cascade is evident as the smaller scales are coalescing to form large scale length structure.

7.2 Evolution of phase randomized velocity potential for incompressible visco-elastic fluids. It could be seen that in contrast to hydrodynamic fluids, much shorter structures are present in this particular case. The parameters \(\eta \) and \(\tau_m \) are 5 and 20 respectively.
7.3 The plot of $<k>^2$ with time for the GHD case with ($\eta = 5$ and $\tau_m = 20$) (square) and for the incompressible fluid (circle). the initial random flow has been taken of the form given by Eq. (7.7) with $n = 2$. ... 125

7.4 Comparison of power spectra for incompressible hydrodynamic fluid (blue box) with incompressible visco-elastic fluids (red circle). ... 126

7.5 Power spectra for incompressible visco-elastic fluids with different initial form of spectrum mentioned alongside. For the subplots (a), (b) and (c), the initial power has been injected at $k_m = 20, 30$ and $k_m = 90$ respectively. 127

7.6 Power spectra with different initial form of spectrum (monotonically distributed power) mentioned alongside. For the subplots (a), (b) and (c), the initial power has been injected as given in Eq. (7.7) with $n = 8, 4$ and $n = 2$ respectively. 128

7.7 Power spectra plots with different value of η/τ_m for incompressible visco-elastic fluid. ... 130
List of Tables

3.1 Cusp solutions .. 34

5.1 Flow velocities in Dusty plasmas 66