INDEX

CHAPTER -1 INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Pharmaceutical Analysis</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Chromatography</td>
<td>2</td>
</tr>
<tr>
<td>1.3 High Performance liquid Chromatography</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Method Development</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Method Validation</td>
<td>21</td>
</tr>
</tbody>
</table>

CHAPTER -2 DISOPYRAMIDE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 DRUG PROFILE</td>
<td>27</td>
</tr>
<tr>
<td>2.2 LITERATURE SURVEY</td>
<td>28</td>
</tr>
<tr>
<td>2.2.1 Motivation for the method development</td>
<td>29</td>
</tr>
<tr>
<td>2.3 EXPERIMENTAL</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1 Instrumentation</td>
<td>30</td>
</tr>
<tr>
<td>2.3.2 Chemicals and solvents</td>
<td>30</td>
</tr>
<tr>
<td>2.3.3 The Mobile phase</td>
<td>30</td>
</tr>
<tr>
<td>2.3.4 Standard solution of the drug</td>
<td>30</td>
</tr>
<tr>
<td>2.3.5 Sample Solution</td>
<td>30</td>
</tr>
<tr>
<td>2.3.6 Calculations in Validation Studies</td>
<td>30</td>
</tr>
<tr>
<td>2.4 METHOD DEVELOPMENT</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1 Wavelength Detection</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2 Selection of Stationary Phase</td>
<td>32</td>
</tr>
<tr>
<td>2.4.3 Selection of the Mobile Phase</td>
<td>32</td>
</tr>
<tr>
<td>2.4.4 Flow Rate</td>
<td>33</td>
</tr>
<tr>
<td>2.4.5 Optimized Chromatographic Conditions</td>
<td>33</td>
</tr>
<tr>
<td>2.5 VALIDATION OF THE PROPOSED METHOD</td>
<td>36</td>
</tr>
<tr>
<td>2.5.1 Specificity</td>
<td>36</td>
</tr>
<tr>
<td>2.5.2 Linearity and Range</td>
<td>37</td>
</tr>
<tr>
<td>2.5.3 Method Precision</td>
<td>38</td>
</tr>
<tr>
<td>2.5.3.1 Intraday precision</td>
<td>38</td>
</tr>
<tr>
<td>2.5.3.2 Interday precision</td>
<td>39</td>
</tr>
</tbody>
</table>
CHAPTER -3 OXYBUTYNIN

3.1 DRUG PROFILE

3.2 LITERATURE SURVEY
 3.2.1 Motivation for the method development

3.3 EXPERIMENTAL
 3.3.1 Instrumentation
 3.3.2 Chemicals and solvents
 3.3.3 Buffer Solution
 3.3.4 The Mobile phase
 3.3.5 Standard solution of the drug
 3.3.6 Sample Solution
 3.3.7 Calculations in Validation Studies

3.4 METHOD DEVELOPMENT
 3.4.1 Wavelength Detection
 3.4.2 Selection of Stationary Phase
 3.4.3 Selection of the Mobile Phase
 3.4.4 Flow Rate
 3.4.5 Optimized Chromatographic Conditions

3.5 VALIDATION OF THE PROPOSED METHOD
 3.5.1 Specificity
 3.5.2 Linearity and Range
 3.5.3 Method Precision
 3.5.3.1 Intraday precision
 3.5.3.2 Interday precision
3.5.4 Accuracy
3.5.5 Robustness
3.5.6 Solution Stability
3.5.7 System Suitability Studies
3.5.8 Limit of Detection and Limit of Quantification
3.5.9 Analysis of a commercial formulation
3.5.10 Plasma sample analysis
3.6 RESULTS AND DISCUSSION

CHAPTER -4 PIOGLITAZONE

4.1 DRUG PROFILE
4.2 LITERATURE SURVEY
 4.2.1 Motivation for the method development
4.3 EXPERIMENTAL
 4.3.1 Instrumentation
 4.3.2 Chemicals and solvents
 4.3.3 The Mobile phase
 4.3.4 Standard solution of the drug
 4.3.5 Sample Solution
 4.3.6 Calculations in Validation Studies
4.4 METHOD DEVELOPMENT
 4.4.1 Wavelength Detection
 4.4.2 Selection of Stationary Phase
 4.4.3 Selection of the Mobile Phase
 4.4.4 Flow Rate
 4.4.5 Optimized Chromatographic conditions
4.5 VALIDATION OF THE PROPOSED METHOD
 4.5.1 Specificity
 4.5.2 Linearity and Range
 4.5.3 Method Precision
 4.5.3.1 Intraday precision
 4.5.3.2 Interday precision
 4.5.4 Accuracy
CHAPTER -5 RIBAVIRIN

5.1 DRUG PROFILE

5.2 LITERATURE SURVEY

5.2.1 Motivation for the method development

5.3 EXPERIMENTAL

5.3.1 Instrumentation
5.3.2 Chemicals and solvents
5.3.3 The buffer solution
5.3.4 The Mobile phase
5.3.5 Standard solution of the drug
5.3.6 Sample Solution
5.3.7 Calculations in Validation Studies

5.4 METHOD DEVELOPMENT

5.4.1 Wavelength Detection
5.4.2 Selection of Stationary Phase
5.4.3 Selection of the Mobile Phase
5.4.4 Flow Rate
5.4.5 Optimized Chromatographic Conditions

5.5 VALIDATION OF THE PROPOSED METHOD

5.5.1 Specificity
5.5.2 Linearity and Range
5.5.3 Method Precision
5.5.3.1 Intraday precision
5.5.3.2 Interday precision
5.5.4 Accuracy
5.5.5 Robustness
5.5.6 Solution Stability
5.5.7 System Suitability Studies
5.5.8 Limit of Detection and Limit of Quantification
5.5.9 Analysis of a commercial formulation
5.5.10 Plasma sample analysis
5.6 RESULTS AND DISCUSSIONS

CHAPTER -6 PANTOPRAZOLE

6.1 DRUG PROFILE
6.2 LITERATURE SURVEY
 6.2.1 Motivation for the method development
6.3 EXPERIMENTAL
 6.3.1 Instrumentation
 6.3.2 Chemicals and solvents
 6.3.3 The buffer solution
 6.3.4 The Mobile phase
 6.3.5 Standard solution of the drug
 6.3.6 Sample Solution
 6.3.7 Calculations in Validation Studies
6.4 METHOD DEVELOPMENT
 6.4.1 Wavelength Detection
 6.4.2 Selection of Stationary Phase
 6.4.3 Selection of the Mobile Phase
 6.4.4 Flow Rate
 6.4.5 Optimized Chromatographic Conditions
6.5 VALIDATION OF THE PROPOSED METHOD
 6.5.1 Specificity
 6.5.2 Linearity and Range
 6.5.3 Method Precision
 6.5.3.1 Intraday precision
 6.5.3.2 Interday precision
 6.5.4 Accuracy
6.5.5 Robustness 138
6.5.6 Solution Stability 139
6.5.7 System Suitability Studies 140
6.5.8 Limit of Detection and Limit of Quantification 140
6.5.9 Analysis of a commercial formulation 141
6.5.10 Plasma sample analysis 141

6.6 RESULTS AND DISCUSSIONS 142

CHAPTER -7 DEFERASIROX

7.1 DRUG PROFILE 146
7.2 LITERATURE SURVEY 147
 7.2.1 Motivation for the method development 148

7.3 EXPERIMENTAL 149
 7.3.1 Instrumentation 149
 7.3.2 Chemicals and solvents 150
 7.3.3 The buffer solution 150
 7.3.4 The Mobile phase 150
 7.3.5 Standard solution of the drug 150
 7.3.6 Sample Solution 150
 7.3.7 Calculations in Validation Studies 151

7.4 METHOD DEVELOPMENT 151
 7.4.1 Wavelength Detection 151
 7.4.2 Selection of Stationary Phase 152
 7.4.3 Selection of the Mobile Phase 152
 7.4.4 Flow Rate 153
 7.4.5 Optimized Chromatographic conditions 153

7.5 VALIDATION OF THE PROPOSED METHOD 155
 7.5.1 Specificity 155
 7.5.2 Linearity and Range 156
 7.5.3 Method Precision 157
 7.5.3.1 Intraday precision 158
 7.5.3.2 Interday precision 158
 7.5.4 Accuracy 159
7.5.5 Robustness 160
7.5.6 Solution Stability 161
7.5.7 System Suitability Studies 162
7.5.8 Limit of Detection and Limit of Quantification 163
7.5.9 Analysis of a commercial formulation 164
7.5.10 Plasma sample analysis 164
7.6 RESULTS AND DISCUSSIONS 165

CHAPTER -8 PAROXETINE HYDROCHLORIDE

8.1 DRUG PROFILE 169
8.2 LITERATURE SURVEY 171
 8.2.1 Motivation for the method development 172
8.3 EXPERIMENTAL 173
 8.3.1 Instrumentation 173
 8.3.2 Chemicals and solvents 174
 8.3.3 The buffer solution 174
 8.3.4 The Mobile phase 174
 8.3.5 Standard solution of the drug 174
 8.3.6 Sample Solution 174
 8.3.7 Calculations in Validation Studies 175
8.4 METHOD DEVELOPMENT 175
 8.4.1 Wavelength Detection 176
 8.4.2 Selection of Stationary Phase 176
 8.4.3 Selection of the Mobile Phase 176
 8.4.4 Flow Rate 177
 8.4.5 Optimized Chromatographic Conditions 177
8.5 VALIDATION OF THE PROPOSED METHOD 180
 8.5.1 Specificity 180
 8.5.2 Linearity and Range 180
 8.5.3 Method Precision 182
 8.5.3.1 Intraday precision 182
 8.5.3.2 Interday precision 183
 8.5.4 Accuracy 184
CHAPTER 9 LAMOTRIGINE

9.1 DRUG PROFILE 193

9.2 LITERATURE SURVEY 194
 9.2.1 Motivation for the method development 197

9.3 EXPERIMENTAL 198
 9.3.1 Instrumentation 198
 9.3.2 Chemicals and solvents 199
 9.3.3 The buffer solution 199
 9.3.4 The Mobile phase 199
 9.3.5 Standard solution of the drug 199
 9.3.6 Sample Solution 199
 9.3.7 Calculations in Validation Studies 200

9.4 METHOD DEVELOPMENT 200
 9.4.1 Wavelength Detection 201
 9.4.2 Selection of Stationary Phase 201
 9.4.3 Selection of the Mobile Phase 201
 9.4.4 Flow Rate 202
 9.4.5 Optimized Chromatographic Conditions 202

9.5 VALIDATION OF THE PROPOSED METHOD 205
 9.5.1 Specificity 205
 9.5.2 Linearity and Range 206
 9.5.3 Method Precision 207
 9.5.3.1 Intraday precision 208
 9.5.3.2 Interday precision 208
 9.5.4 Accuracy 209
9.5.5 Robustness 210
9.5.6 Solution Stability 211
9.5.7 System Suitability Studies 212
9.5.8 Limit of Detection and Limit of Quantification 213
9.5.9 Analysis of a commercial formulation 213
9.5.10 Plasma sample analysis 214
9.6 RESULTS AND DISCUSSIONS 215

CHAPTER -10 METOCLOPRAMIDE

10.1 DRUG PROFILE 218
10.2 LITERATURE SURVEY 219
 10.2.1 Motivation for the method development 221
10.3 EXPERIMENTAL 222
 10.3.1 Instrumentation 222
 10.3.2 Chemicals and solvents 222
 10.3.3 The buffer solution 222
 10.3.4 The Mobile phase 223
 10.3.5 Standard solution of the drug 223
 10.3.6 Sample Solution 223
 10.3.7 Calculations in Validation Studies 223
10.4 METHOD DEVELOPMENT 224
 10.4.1 Wavelength Detection 224
 10.4.2 Selection of Stationary Phase 225
 10.4.3 Selection of the Mobile Phase 225
 10.4.4 Flow Rate 226
 10.4.5 Optimized Chromatographic Conditions 226
10.5 VALIDATION OF THE PROPOSED METHOD 228
 10.5.1 Specificity 228
 10.5.2 Linearity and Range 229
 10.5.3 Method Precision 231
 10.5.3.1 Intraday precision 231
 10.5.3.2 Interday precision 231
10.5.4 Accuracy 232
10.5.5 Robustness 233
10.5.6 Solution Stability 234
10.5.7 System Suitability Studies 235
10.5.8 Limit of Detection and Limit of Quantification 236
10.5.9 Analysis of a commercial formulation 236
10.5.10 Plasma sample analysis 237

10.6 RESULTS AND DISCUSSIONS 238

CHAPTER -11 OLMESARTAN

11.1 DRUG PROFILE 241
11.2 LITERATURE SURVEY 242
11.2.1 Motivation for the method development 243
11.3 EXPERIMENTAL 244
11.3.1 Instrumentation 244
11.3.2 Chemicals and solvents 245
11.3.3 The buffer solution 245
11.3.4 The Mobile phase 245
11.3.5 Standard solution of the drug 245
11.3.6 Sample Solution 245
11.3.7 Calculations in Validation Studies 246
11.4 METHOD DEVELOPMENT 246
11.4.1 Wavelength Detection 246
11.4.2 Selection of Stationary Phase 247
11.4.3 Selection of the Mobile Phase 247
11.4.4 Flow Rate 248
11.4.5 Optimized Chromatographic Conditions 248
11.5 VALIDATION OF THE PROPOSED METHOD 251
11.5.1 Specificity 251
11.5.2 Linearity and Range 252
11.5.3 Method Precision
11.5.3.1 Intraday precision 254
11.5.3.2 Interday precision 254
11.5.4 Accuracy
11.5.5 Robustness
11.5.6 Solution Stability
11.5.7 System Suitability Studies
11.5.8 Limit of Detection and Limit of Quantification
11.5.9 Analysis of a commercial formulation
11.5.10 Plasma sample analysis

11.6 RESULTS AND DISCUSSIONS

CHAPTER 12 - SUMMARY AND CONCLUSIONS

✓ REFERENCES

✓ APPENDIX I