CHAPTER 7

CONCLUSION

The sports e-learning system is an emerging area which requires a specialized approach compared to e-learning in other domains, in the sense that sports learning is not just a mere knowledge transfer; it includes physical activity and performance in events. This thesis brings an approach to sports e-learning, with a system based on ontology based keyword search and collaborative learning.

The sports e-learning system based on ontology based key word search provides more precise and accurate results and the response time is much higher than in traditional sports learning.

The collaborative learning facilitates access to the system simultaneously by multiple sports e-learners.

In an experiment conducted with 3 keyword (same input, different inputs) search the number of documents in the system is 256, the documents retrieved are 251 and the total number of documents is 250. This shows that the ontology based search results are 98.0 precision and 99.6 recalls. Without ontology the same system has 256 documents, and the documents retrieved are 240 which shows that the precision is 93.7 and the recall is 87.5
The goal of the e-learner can be achieved only if all the constraints are satisfied. Without CSP the goal cannot be achieved. CSP supports the construction of the query template, based on the physiological variables given. The result of the CSP provides adequate information to the e-learner for planning and scheduling the task to complete the activity.

This thesis brings the physiological variable into consideration for the sports e-learner to plan and schedule the task. In future, based on the Behavioral facial expression, the physiological variable can be derived during the activity. The physiological variable can also be used to understand the psychology of the e-learner. Both the behavioral pattern and psychology can be used as an input for the e-learning system, and the physiological parameters can be used for planning and scheduling the sports event.