REFERENCES


41. Gaspar, P, Carvalho, AL, Vinga, S, Santos, H & Neves, AR 2013, 'From physiology to systems metabolic engineering for the production of biochemicals by Lactic Acid Bacteria', Biotechnology advances.


44. Grahame, DAS, Kang, TS, Khan, NH & Tanaka, T 2013, 'Alkaline conditions stimulate the production of 1,3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways', World Jounral of Microbiology Biotechnology, vol. 29, pp. 1207-1215.


59. Kang, TS, Korber, DR & Tanaka, T 2013, 'Glycerol and environmental factors: effects on 1,3-propanediol production and NAD+ regeneration in Lactobacillus panis PM1', Journal of Applied Microbiology, vol. 115, pp. 1003-1011.


72. Liu, HJ, Zhang, DJ, Xu, YH, Mu, Y, Sun, YQ & Xiu, ZL 2007, 'Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under microaerobic conditions up to a pilot scale', Biotechnology Letters, vol. 29, pp. 1281-1285.


98. Pancheniak, EdF, Maziero, MT, Rodriguez-León, JA, Parada, JL, Spier, MR & Soccol, CR 2012, 'Molecular characterisation and biomass and metabolite production of Lactobacillus reuteri LPB P01-


formation during production of 1, 3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway', Applied microbiology and biotechnology, vol. 84, no. 3, pp. 527-534.


146. Tobajas, M, Mohedano, AF, Casas, JA & Rodríguez, JJ 2009, 'Unstructured kinetic model for reuterin and 1, 3-propanediol production by Lactobacillus reuteri from glycerol/glucose co-fermentation', Journal of Chemical Technology and Biotechnology, vol. 84, no. 5, pp. 675-680.


156. Wang, Y, Tao, F, Tang, H & Xu, P 2013, 'Genome sequence of *Clostridium diolis* strain DSM 15410, a promising natural producer of 1, 3-propanediol', Genome Announcements, vol. 1, no. 4, pp. e00542-13.


