CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>DISCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td></td>
<td>1-7</td>
</tr>
<tr>
<td>II REVIEW OF RELATED LITERATURE</td>
<td></td>
<td>8-44</td>
</tr>
<tr>
<td>2.1 Zinc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1 Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2 Absorption and metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.3 Deficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4 Prevalence of maternal zinc deficiency in India and in Abroad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4.1 Prevalence of maternal zinc deficiency in abroad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4.2 Prevalence of maternal zinc deficiency in India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5 Consequences of maternal zinc deficiency on pregnancy outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.1 Fetal growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.2 Length of gestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.3 Neurobehavioral development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.4 Labour and delivery complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.5 Postnatal outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.5.1 Immunologic development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.5.2 Vitamin A status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5.5.3 Postnatal growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.6 Zinc supplementation in pregnancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Vitamin A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1 Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2 Deficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.3 Prevalence of maternal vitamin A deficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.3.1 In abroad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.3.2 In India</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.4 Vitamin A / β-carotene supplementation during pregnancy

2.3 Interactions between zinc and vitamin A

2.3.1 Human Studies based on interaction of zinc and vitamin A
 2.3.1.1 Human Studies based on interaction of zinc and Vitamin A during pregnancy

2.3.2 Animal studies based on the interaction of zinc and Vitamin A
 2.3.2.1 Animal Studies based on Interaction of zinc and Vitamin A in pregnancy

2.3.3 Zinc and Vitamin A interaction via the visual cycle

2.3.4 Zinc and vitamin A interaction in disease states

2.3.5 Supplementation of zinc and vitamin A/ β-carotene together during pregnancy

2.4 Human Pregnancy

2.4.1 Progression

2.4.2 Initiation

2.4.3 Prenatal period

2.4.4 Postnatal period

2.4.5 Duration

2.4.6 Terms of delivery

2.4.7 Childbirth

2.4.8 Diagnosis

2.4.9 Early signs and symptoms

2.4.10 Early medical signs and symptoms

2.4.11 Pregnancy Tests
 2.4.11.1 Human Chorionic Gonadotropin Hormone Test
 2.4.11.2 Sonograph

2.4.12 Embryonic and fetal development

2.4.13 Physiology
 2.4.13.1 First trimester
 2.4.13.2 Second trimester
2.4.13.3 Third trimester
2.4.14 Weight gain
2.4.15 Nutrition
2.4.16 Complications
2.4.17 New born outcomes

III MATERIALS AND METHODS

3.1 Locale of the study
3.2 Sample selection
 3.2.1 Criteria for adjudging the prevalence of Zinc and vitamin A deficiency
3.3 Data collection
 3.3.1 General Information
 3.3.2 Reproductive information
3.4 Development of interview schedule for collecting the data
3.5 Experimental plan
 3.5.1 Criteria for the selection of experimental subjects for feeding Trial
 3.5.2 Sub-grouping of the volunteered subjects for experimental feeding trial
3.6 Nutritional Status
 3.6.1 Anthropometric
 3.6.1.1 Measurement of Height
 3.6.1.2 Measurement of Weight
 3.6.1.3 Measurement of Body Mass Index (BMI)
 3.6.2 Dietary Status
 3.6.3 Biochemical parameters
 3.6.3.1 Collection and separation of the blood samples
 3.6.3.2 Analysis of blood
 3.6.3.2.1 Serum Zinc
 3.6.3.2.2 Serum Retinol
3.7 Clinical Information
3.8 Supplementation
3.8.1 Zinc syrup
3.8.2 β-carotene rich supplement
 3.8.2.1 Preparation of β-carotene rich food supplement
 3.8.2.1.1 Moisture content of food
 3.8.2.1.2 β-carotene estimation
3.8.3 Zinc supplement and β-carotene supplement
3.8.4 Feeding pattern of the supplements

3.9 Outcomes measured
 3.9.1 Pregnancy outcomes
 3.9.1.1 Type of delivery
 3.9.1.2 Term of delivery
 3.9.2 Newborn and infant outcomes
 3.9.2.1 Measurement of Birth Weight
 3.9.2.2 Measurement of length
 3.9.2.3 Measurement of Head Circumference
 3.9.2.4 Measurement of Chest Circumference
 3.9.2.5 Diarrhea and Cough

3.10 Ethical Clearance

3.11 Determination of zinc and β-carotene content in locally available foods
 3.11.1 Zinc estimation from foods
 3.11.2 β-carotene estimation from foods

3.12 Data Processing and Statistical Analysis

IV RESULTS AND DISCUSSION 77-159

SUMMARY AND CONCLUSION 160-170

REFERENCES 171-197

ANNEXURES 198-203