EFFECT OF FYM, N P K AND MICRONUTRIENTS ON GROWTH, YIELD AND FRUIT QUALITY OF TOMATO (*Lycopersicon esculentum* Mill.) Cv. HEEMSOHNA UNDER PROTECTED CULTIVATION

ABSTRACT

The experiment was carried out in vegetable Research Farm, during mid-November to 8-May in the year 2011-12 and 2012-13 with 18 treatments in 3 replications in split plot design, the treatments ranged from T_1 (control), T_2 (FYM 1.5 kg / m2), T_3 (FYM 2.5 kg / m2), T_4 (30.86 g N, 18.51 g P and 18.51 g K / m2), T_5 (30.86 g N, 18.51 g P and 18.51 g K / m2 + FYM 1.5 kg / m2), T_6 ((30.86 g N, 18.51 g P and 18.51 g K / m2 + FYM 2.5 kg / m2), T_7 (46.29 g N, 37.02 g P and 37.02 g K / m2), T_8 (46.29 g N, 37.02 g P and 37.02 g K / m2 + FYM 1.5 kg / m2) , T_9 (46.29 g N, 37.02 g P and 37.02 g K / m2 + FYM 2.5 kg / m2), T_{10} (Micronutrient 2.5ml/l), T_{11} (FYM 1.5 kg / m2 + Micronutrient 2.5ml/l), T_{12} (FYM 2.5 kg / m2 + Micronutrient 2.5ml/l) , T_{13} (30.86 g N, 18.51 g P and 18.51 g K / m2 + Micronutrient 2.5ml/l), T_{14} (30.86 g N, 18.51 g P and 18.51 g K / m2 + FYM 1.5 kg / m2 + Micronutrient 2.5ml/l), T_{15} (30.86 g N, 18.51 g P and 18.51 g K / m2 + FYM 2.5 kg / m2 + Micronutrient 2.5ml/l), T_{16} (46.29 g N, 37.02 g P and 37.02 g K / m2 + Micronutrient 2.5ml/l), T_{17} (46.29 g N, 37.02 g P and 37.02 g K / m2 + FYM 1.5 kg / m2 + Micronutrient 2.5ml/l) and T_{18} (46.29 g N, 37.02 g P and 37.02 g K / m2 + FYM 2.5 kg / m2 + Micronutrient 2.5ml/l). The cultivar of tomato was "Heemshona" from Syngenta company. Different types of observations like plant height, stem diameter, number of leaves per plant, leave area, dry weight, No. of clusters/plant, No. of flowers/cluster, No. of fruits/cluster, Number of fruits/plant, fruit weight, yield/plant, early yield, total yield, T.S.S. (Total soluble solids) °Brix, ascorbic acid, chlorophyll content in leaves, lycopene pigment and economics of different treatments were also worked out. The highest fruit weight (73.17 g) was recorded in T_{17} (46.29 g N, 37.02 g P and 37.02 g K / m2 + FYM 1.5 kg / m2 + Micronutrient 2.5ml/l). The treatment T_{18} (46.29 g N, 37.02 g P and 37.02 g K / m2 + FYM 2.5 kg / m2 + Micronutrient 2.5ml/l) was found to be the best in both years – wise performance and pooled analysis with respect to all parameters under observation. The treatment T_{18} was obtained the highest total yield (3.172 tonnes in 220 m2).