CONTENTS

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>II</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>III</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>IV</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Human Papilloma Virus
1.2 HPV infection and its detection
1.3 Cervical cancer
1.4 HPV Vaccines
1.5 Justification of the work
Objectives

CHAPTER 2

REVIEW OF LITERATURE

2.1 Human Papillomavirus Classification
2.2 Association with Cervical cancer
2.3 Genomic Organization
2.4 The viral Proteins E 7
2.5 HPV 16 E 7 life cycle
2.6 Principles of HPV Vaccine for Cervical Cancer
2.7 Gene Expression Profile of HPV 16 E 7 in Squamous Cervical Carcinoma
2.8 Effect of HPV E 7 on cellular metabolism
2.9 Human TMEM 50 A

Run-length encoded text:

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>II</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>III</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>IV</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Human Papilloma Virus
1.2 HPV infection and its detection
1.3 Cervical cancer
1.4 HPV Vaccines
1.5 Justification of the work
Objectives

CHAPTER 2

REVIEW OF LITERATURE

2.1 Human Papillomavirus Classification
2.2 Association with Cervical cancer
2.3 Genomic Organization
2.4 The viral Proteins E 7
2.5 HPV 16 E 7 life cycle
2.6 Principles of HPV Vaccine for Cervical Cancer
2.7 Gene Expression Profile of HPV 16 E 7 in Squamous Cervical Carcinoma
2.8 Effect of HPV E 7 on cellular metabolism
2.9 Human TMEM 50 A
2.10 Bioinformatics Approaches

2.11 In-Silico Proteome Analysis of HPV 16 E 7 and Human TMEM 50 A

2.12 Immunoinformatics and Vaccine Designing

2.13 In-Silico Epitope prediction

CHAPTER 3 MATERIALS AND METHODS

3.1 HPV 16 E 7 Protein sequence retrieval and analysis

3.1.1 Primary structure Analysis for HPV 16 E7 protein

3.1.2 Secondary structure Analysis for HPV 16 E7 protein

3.1.3 Multiple sequence alignment

3.1.4 Phylogenetic Analysis of HPV 16 E7

3.2 Prediction of families and domains in HPV 16 E 7 and Human TMEM 50 A

3.3 Sequence Analysis of TMEM 50 A (Human Transmembrane protein)

3.3.1 Characterization of target sequence

3.4 Prediction of disordered regions in HPV16 E7

3.5 Homology modelling for HPV type 16 E 7 Protein

3.6 Molecular Dynamics Simulation study of the predicted model of HPV 16 E 7

3.7 Virtual screening for validated model structure of HPV 16 E 7 Protein

3.8 Homology modelling for Human TMEM 50 A using I-TRASSER Server
3.9 Model refinement and Evaluation

3.10 Active site prediction of TMEM 50 A Protein

3.11 Computational epitope prediction for HPV 16 E7 Protein

3.12 Docking of Human TMEM 50 A and modeled T-cell epitopes of HPV 16 E7 antigens

3.13 Prediction of Protein-Protein interaction of docked molecules

CHAPTER 4 RESULTS AND DISCUSSION

4.1 HPV16 E7 protein sequence retrieval and analysis

4.2 Predicted disordered regions and globularity of HPV 16 E7

4.3 T-COFFEE Analysis

4.4 Phylogenetic tree analysis of HPV 16 E7

4.5 Predicted families, Domains and Motifs in Human Papilloma Virus 16 E7 and Human TMEM 50 A

4.6 Characterisation of TMEM 50A (Human protein)

4.7 Model building, refinement and evaluation for modeled structure of the HPV 16 E7 Protein

4.8 Z-score Analysis

4.9 The Molecular Dynamics Simulation of the HPV16 E7

4.10 Virtual screening for validated model

31-69
<table>
<thead>
<tr>
<th>Structure of HPV 16 E7 Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11 Model refinement and evaluation of Human TMEM 50 A Protein</td>
</tr>
<tr>
<td>4.12 Active site prediction of Human TMEM 50 A</td>
</tr>
<tr>
<td>4.13 B-cell epitope binding peptide prediction</td>
</tr>
<tr>
<td>4.14 MHC Class-1 binding epitope Prediction</td>
</tr>
<tr>
<td>4.15 MHC Class-2 binding epitope Prediction</td>
</tr>
<tr>
<td>4.16 Docking of MHC Class-1 modeled epitopes and Human TMEM 50A</td>
</tr>
<tr>
<td>4.17 Docking of MHC Class-2 modeled epitopes and Human TMEM 50A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUMMARY AND CONCLUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAPERS PUBLISHED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SUPPLEMENTARY MATERIAL</th>
</tr>
</thead>
</table>