Section C

7.0 Chemistry

The synthetic route for substituted 2-[(1H-benzo[d]imidazol-2-yl)amino]-pyrimidine derivatives are shown in Scheme 2. The known 2-benzimidazolylguanidine \(53a,b \) was synthesized from substituted \(o \)-phenylenediamine \(51a,b \) and cyanoguanidine \(52 \) by following literature procedure.\(^9^4\) Compound \(53 \) was treating with tri ethyl orthoformate \(\text{CH(OC}_2\text{H}_5)_3 \) and active methylene compounds containing carbonyl function \(54, 1,3 \)-diketones \) to furnish substituted 2-[(1H-benzo[d]imidazol-2-yl)amino]-pyrimidine \(55a-h \). The synthetic route for carboxamide derivatives are shown in Scheme 3. The substituted acetoacanilide \(57 \) was directly prepared from substituted aniline \(56 \) by our laboratory established method.\(^9^5\) The compounds \(57 \) were reacted with tri ethyl orthoformate \(\text{CH(OC}_2\text{H}_5)_3 \) and 2-benzimidazolylguanidine \(53a,b \) to give regioisomers intermediate \(58a–n \). The cyclization of regioisomers intermediate was carried out by heating in glacial acetic acid with sodium acetate to furnish 2-[(1H-benzo[d]imidazol-2-yl)amino]-4-methyl-N-(substituted)-phenyl-pyrimidine-5-carboxamide derivatives \(59a–n \). Table 7.1 and 7.2 show the yields and the physical data of these compounds.
7.1 Reaction Scheme

7.1.1 Scheme 1 Synthetic route for 2-benzimidazolylguanidine (53a, b).

\[
\begin{align*}
\text{51a, b} & \quad + \quad \text{52} \\
& \rightarrow \\
\text{53a, b} & \quad \text{HCl, reflux 3 h} \\
& \quad 10 \text{% KOH}
\end{align*}
\]

\(a; R^1 = H, \quad b; R^1 = Cl\)

7.1.2 Scheme 2 Synthetic routes for substituted 2-[(1H-benzo[d]imidazol-2-yl)amino]-pyrimidine derivatives (55a–h).

\[
\begin{align*}
\text{53} & \quad + \quad \text{54} \\
& \rightarrow \\
\text{55a-h} & \quad \text{Reflux 30 - 60 min} \\
& \quad \text{CH(OC}_2\text{H}_3}_3\text{, tri ethyl orthoformate}
\end{align*}
\]

\(a: R^1 = H; R^2 = R^3 = Me, \quad c: R^1 = Cl; R^2 = R^3 = Me, \quad e: R^1 = Cl; R^2 = Me; R^3 = OMe, \quad f: R^1 = Cl; R^2 = Me; R^3 = OMe, \quad g: R^1 = Cl; R^2 = Me; R^3 = OEt, \quad h: R^1 = H; R^2 = i\text{-Pr}; R^3 = OMe, \quad b: R^1 = H; R^2 = Me; R^3 = OEt, \quad d: R^1 = H; R^2 = CF}_3; R^3 = OEt, \quad i: R^1 = H; R^2 = i\text{-Pr}; R^3 = OMe, \quad j: R^1 = H; R^2 = Me; R^3 = OEt, \quad k: R^1 = H; R^2 = Me; R^3 = OEt, \quad l: R^1 = H; R^2 = Me; R^3 = OEt, \quad m: R^1 = H; R^2 = Me; R^3 = OEt, \quad n: R^1 = H; R^2 = Me; R^3 = OEt, \quad o: R^1 = H; R^2 = Me; R^3 = OEt, \quad p: R^1 = H; R^2 = Me; R^3 = OEt, \quad q: R^1 = H; R^2 = Me; R^3 = OEt, \quad r: R^1 = H; R^2 = Me; R^3 = OEt, \quad s: R^1 = H; R^2 = Me; R^3 = OEt, \quad t: R^1 = H; R^2 = Me; R^3 = OEt, \quad u: R^1 = H; R^2 = Me; R^3 = OEt, \quad v: R^1 = H; R^2 = Me; R^3 = OEt, \quad w: R^1 = H; R^2 = Me; R^3 = OEt, \quad x: R^1 = H; R^2 = Me; R^3 = OEt, \quad y: R^1 = H; R^2 = Me; R^3 = OEt, \quad z: R^1 = H; R^2 = Me; R^3 = OEt,
7.1.3 Scheme 3 Synthetic routes for 2-[(1H-benzo[d]imidazol-2-yl)amino]-4-methyl-N-(substituted)phenylpyrimidine-5-carboxamide derivatives (59a–n).
Table 7.1 Yields and physical data of the compounds 55a–h.

![55a-h](image)

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Substitute</th>
<th>Yield %</th>
<th>MP °C</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>55a</td>
<td>H Me Me</td>
<td>88</td>
<td>>300</td>
<td>CHN</td>
</tr>
<tr>
<td>55b</td>
<td>H Me OMe</td>
<td>79</td>
<td>210–211</td>
<td>CHN</td>
</tr>
<tr>
<td>55c</td>
<td>H Me OEt</td>
<td>76</td>
<td>221–222</td>
<td>CHN</td>
</tr>
<tr>
<td>55d</td>
<td>H CF₃ OEt</td>
<td>72</td>
<td>214–215</td>
<td>CHN</td>
</tr>
<tr>
<td>55e</td>
<td>Cl Me Me</td>
<td>78</td>
<td>>300</td>
<td>CHN</td>
</tr>
<tr>
<td>55f</td>
<td>Cl Me OMe</td>
<td>74</td>
<td>222–223</td>
<td>CHN</td>
</tr>
<tr>
<td>55g</td>
<td>Cl Me OEt</td>
<td>71</td>
<td>234–235</td>
<td>CHN</td>
</tr>
<tr>
<td>55h</td>
<td>H i-Pr OMe</td>
<td>79</td>
<td>218–219</td>
<td>CHN</td>
</tr>
</tbody>
</table>

Table 7.2 Yields and physical data of the compounds 59a–n.

![59a-n](image)

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Substitute</th>
<th>Yield %</th>
<th>MP °C</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>59a</td>
<td>H H</td>
<td>82</td>
<td>268–270</td>
<td>CHN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>59b</td>
<td>H</td>
<td>2-MeO</td>
<td>75</td>
<td>248–249</td>
</tr>
<tr>
<td>59c</td>
<td>H</td>
<td>4-MeO</td>
<td>77</td>
<td>240–241</td>
</tr>
<tr>
<td>59d</td>
<td>H</td>
<td>2-F</td>
<td>73</td>
<td>242–243</td>
</tr>
<tr>
<td>59e</td>
<td>H</td>
<td>4-F</td>
<td>79</td>
<td>247–248</td>
</tr>
<tr>
<td>59f</td>
<td>H</td>
<td>2-Cl</td>
<td>69</td>
<td>252–253</td>
</tr>
<tr>
<td>59g</td>
<td>H</td>
<td>3-Cl</td>
<td>71</td>
<td>240–241</td>
</tr>
<tr>
<td>59h</td>
<td>Cl</td>
<td>3-Cl</td>
<td>74</td>
<td>255–256</td>
</tr>
<tr>
<td>59i</td>
<td>H</td>
<td>4-Br</td>
<td>82</td>
<td>262–263</td>
</tr>
<tr>
<td>59j</td>
<td>H</td>
<td>2-Me</td>
<td>72</td>
<td>286–287</td>
</tr>
<tr>
<td>59k</td>
<td>Cl</td>
<td>2-Me</td>
<td>76</td>
<td>271–272</td>
</tr>
<tr>
<td>59l</td>
<td>H</td>
<td>2,6-di-Me</td>
<td>67</td>
<td>> 300</td>
</tr>
<tr>
<td>59m</td>
<td>H</td>
<td>3-CF₃</td>
<td>63</td>
<td>265–266</td>
</tr>
<tr>
<td>59n</td>
<td>Cl</td>
<td>3-CF₃</td>
<td>61</td>
<td>272–273</td>
</tr>
</tbody>
</table>
7.2 Experimental

7.2.1 General methods and materials

All commercial chemicals and solvents were reagent grade and used without further purification unless otherwise specified. Melting points were determined on a Fargo melting point apparatus and are uncorrected. Thin-layer chromatography was performed on silica gel G60 F₂₅₄ (Merck) with short-wavelength UV light for visualization. All reported yields are isolated yields after chromatography or crystallization. Elemental analyses were done on a Heraeus CHN-O Rapid instrument. Mass spectra were recorded on Shimadzu GC-MS QP-2010 model using direct injection probe technique. The molecular ion peak was found in agreement with molecular weight of the respective compound. ¹H NMR spectra were recorded on a 400 MHz, Brucker Top-Spin spectrometers in the indicated solvent. The chemical shifts were reported in ppm (δ) relative to TMS and coupling constants (J) in Hertz (Hz) and s, d, t, m, brs, refer to singlet, doublet, triplet, multiplet, broad respectively.

All synthesized compounds were characterized by using ¹H NMR, ¹³C NMR, Mass and Elemental analysis. For compounds 55a–h, the characteristic proton signals for pyrimidine ring (Ar-CH) appeared at the range of 8.96–9.09 δ ppm as singlet. The ethyl ester (OC₂H₅) proton appeared at the range of 1.31–1.35 and 4.30–4.34 δ ppm as triplet and quartet respective. The characteristic proton for benzimidazole ring and bridge (NH) appeared at the range of 11.87–12.24 δ ppm as singlet and D₂O exchangeable single. While the compounds 59a–n, the characteristic proton signals for pyrimidine ring (Ar-CH) appeared at the range of 8.73–8.79 δ ppm as singlet and amide (CONH) proton appeared at the range of 10.19–10.51 δ ppm as singlet D₂O exchangeable single. The characteristic proton for benzimidazole ring and bridge (NH) appeared at the range of 11.89–12.01 δ ppm as singlet and D₂O exchangeable single. The molecular ion peak was found in agreement with molecular weight of the respective compound. The elemental analysis of the newly synthesized derivatives was within ±0.4% range of the calculated C, H, N data.
Synthesis of 2-benzimidazolylguanidine (53a). A mixture of o-phenylenediamine (51, 10.8 g, 100 mmol), cyanoguanidine (52, 8.4 g, 100 mmol) and concd HCl (20 mL) in H₂O (200 mL) was heated under reflux for 1 h. The reaction mixture was cooled at 0 °C and KOH (10%; 50 mL) was added slowly. The precipitates of 2-guanidinobenzimidazole were collected by filtration, washed with H₂O, dried, and used in next reactions without further purification. Yield 14 g (80 %); mp 240–242 °C (lit. mp 243–244 °C); MS $m/z = 175$ (M⁺).

By following the same synthetic procedure as that for 53a, the following compounds were synthesized:

5-Chloro-2-benzimidazolylguanidine (53b). Yield, 79 %; mp 258–259 °C. MS $m/z = 209$ (M⁺).

1-[2-((1H-Benz[d]imidazol-2-yl)amino)-4-methylpyrimidin-5-yl]ethanone (55a). A mixture of 2-guanidinobenzimidazole (53a, 1.75 g, 10 mmol), acetylacetone (54, 1 g, 10 mmol) and tri ethyl orthoformate (15 mL) was stirred at reflux temperature for 40 min. Upon the completion of the reaction (monitored by TLC, ethyl acetate:hexane (1:1)), the reaction mixture was concentrated under reduced pressure, and 1 mL of water was added. The separated solid product was collected by filtration and recrystallized from DMF to give 55a 2.3 g (88 %); mp > 300 °C (lit. mp > 300 °C); MS $m/z = 267$ (M⁺). Anal. Calcd. for (C₁₄H₁₃N₅O₄): C, 62.91; H, 4.90; N, 26.20. Found: C, 62.78; H, 4.98; N, 26.44.

By following the same synthetic procedure as that for 55a, the following compounds were synthesized:

Methyl-2-((1H-benzo[d]imidazol-2-yl)amino)-4-methylpyrimidine-5-carboxylate (55b). Yield, 79 %; mp 210–211 °C. 1H NMR (DMSO-$d₆$) δ 2.78 (3H, s, Me), 3.85 (3H, s, OMe), 7.09–7.11 (2H, m, 2 × ArH), 7.51–7.53 (2H, m, 2 × ArH), 8.96 (1H, s, ArH), 11.99 (2H, br s, exchangeable NH). MS $m/z = 283$ (M⁺). Anal. Calcd. for (C₁₄H₁₃N₅O₂): C, 59.36; H, 4.63; N, 24.72. Found: C, 59.69; H, 4.54; N, 24.88.
Ethyl-2-((1H-benzo[d]imidazol-2-yl)amino)-4-methylpyrimidine-5-carboxylate (55c). Yield, 76 %; mp 221–222 °C. 1H NMR (DMSO-d_6) δ 1.34 (3H, t, $J = 7.2$ Hz, Me), 2.77 (3H, s, Me), 4.31 (2H, q, $J = 7.2$ Hz, OCH$_2$), 7.08–7.10 (2H, m, 2 × ArH), 7.47–7.49 (2H, m, 2 × ArH), 8.96 (1H, s, ArH), 11.87 (2H, br s, exchangeable NH). MS m/z = 297 (M$^+$). Anal. Calcd. for (C$_{15}$H$_{15}$N$_5$O$_2$): C, 60.60; H, 5.09; N, 23.56. Found: C, 60.34; H, 5.31; N, 23.41.

Ethyl-2-((1H-benzo[d]imidazol-2-yl)amino)-4-(trifluoromethyl)pyrimidine-5-carboxylate (55d). Yield, 72 %; mp 214–215 °C. 1H NMR (DMSO-d_6) δ 1.32 (3H, t, $J = 7.2$ Hz, Me), 4.31 (2H, q, $J = 7.2$ Hz, OCH$_2$), 7.15–7.17 (2H, m, 2 × ArH), 7.45–7.47 (2H, m, 2 × ArH), 9.09 (1H, s, ArH), 12.24 (2H, br s, exchangeable NH). 13C NMR (DMSO-d_6) δ 13.7, 61.5, 112.6, 112.8, 1211.8, 133.3, 148.9, 161.5, 161.7, 162.7. MS m/z = 351 (M$^+$). Anal. Calcd. for (C$_{15}$H$_{12}$N$_5$O$_2$F$_3$): C, 51.29; H, 3.44; N, 19.94. Found: C, 51.46; H, 3.57; N, 19.73.

1-[2-((5-Chloro-1H-Benzol[d]imidazol-2-yl)amino)-4-methylpyrimidin-5-yl]ethanone (55e). Yield, 78 %; mp > 300 °C. MS m/z = 301 (M$^+$). Anal. Calcd. for (C$_{14}$H$_{12}$N$_5$OCl): C, 55.73; H, 4.01; N, 23.21. Found: C, 55.46; H, 3.89; N, 23.34.

Methyl-2-((5-Chloro-1H-benzo[d]imidazol-2-yl)amino)-4-methylpyrimidine-5-carboxylate (55f). Yield, 74 %; mp 222–223 °C. MS m/z = 317 (M$^+$). Anal. Calcd. for (C$_{14}$H$_{12}$N$_5$O$_2$Cl): C, 52.92; H, 3.81; N, 22.44. Found: C, 52.78; H, 3.98; N, 22.32.

2-((1H-Benz[\textit{d}]imidazol-2-yl)amino)-4-methyl-N-phenylpyrimidine-5-carboxamide (59a). A mixture of 2-guanidinobenzimidazole (53a, 1.75 g, 10 mmol), 3-oxo-N-phenylbutanamide (57, 1.8 g, 10 mmol) and tri ethyl orthoformate (15 mL) was stirred at reflux temperature for 30 min. The precipitates were collected by filtration and recrystallized from dioxane to give (58a). Compound 58a was added into a mixture of anhydrous sodium acetate (3 g) in glacial acetic acid (30 mL) and the reaction mixture was boiled for 30 min. The reaction mixture was cooled to room temperature and dropped into cold water (100 mL). The precipitates was collected by filtration and recrystallized from DMF to give 59a 2.8 g (82 %); mp 268–270 °C; MS m/z = 344 (M+). Anal. Calcd. for (C19H16N6O): C, 66.27; H, 4.68; N, 24.40. Found: C, 66.43; H, 4.47; N, 24.59.

By following the same synthetic procedure as that for 59a, the following compounds were synthesized:

2-((1H-Benz[\textit{d}]imidazol-2-yl)amino)-N-(2-methoxyphenyl)-4-methylpyrimidine-5-carboxamide (59b). Yield, 75 %; mp 248–249 °C. MS m/z = 374 (M+). Anal. Calcd. for (C20H18N6O2): C, 64.16; H, 4.85; N, 22.45. Found: C, 64.38; H, 4.77; N, 22.31.

2-((1H-Benz[\textit{d}]imidazol-2-yl)amino)-N-(4-methoxyphenyl)-4-methylpyrimidine-5-carboxamide (59c). Yield, 77 %; mp 240–241 °C. MS m/z = 374 (M+). Anal. Calcd. for (C20H18N6O2): C, 64.16; H, 4.85; N, 22.45. Found: C, 64.01; H, 4.67; N, 22.28.

2-((1H-Benz[\textit{d}]imidazol-2-yl)amino)-N-(4-fluorophenyl)-4-methylpyrimidine-5-carboxamide (59e). Yield, 79 %; mp 247–248 °C. 1H NMR (DMSO-\textit{d6}) ð 2.66 (3H, s, Me), 7.06–7.10 (2H, m, 2 × ArH), 7.19–7.23 (2H, m, 2 × ArH), 7.46–7.49 (2H, m, 2 × ArH), 7.73–7.77 (2H, m, 2 × ArH), 8.73 (1H, s, ArH), 10.51 (1H, br s, exchangeable CONH), 11.98 (2H, br s, exchangeable NH). MS m/z = 362 (M+). Anal.
Calcd. for (C$_{19}$H$_{15}$N$_{6}$OF): C, 62.98; H, 4.17; N, 23.19. Found: C, 62.80; H, 4.30; N, 23.01.

2-((1H-Benzol[d]imidazol-2-yl)amino)-N-(2-chlorophenyl)-4-methylpyrimidine-5-carboxamide (59f). Yield, 69 %; mp 252–253 °C. 1H NMR (DMSO-d_6) δ 2.71 (3H, s, Me), 7.08–7.11 (2H, m, 2 × ArH), 7.28–7.32 (1H, m, ArH), 7.39–7.43 (1H, m, ArH) 7.51–7.58 (3H, m, 3 × ArH), 7.71–7.73 (1H, m, ArH), 8.79 (1H, s, ArH), 10.19 (1H, br s, exchangeable CONH), 11.90 (2H, br s, exchangeable NH). 13C NMR (DMSO-d_6) δ 23.1, 121.1, 121.9, 127.8, 127.9, 128.2, 129.0, 129.9, 134.9, 148.3, 157.5, 158.5, 165.0, 168.0. MS m/z = 378 (M$^+$). Anal. Calcd. for (C$_{19}$H$_{16}$N$_{6}$OCl): C, 60.24; H, 3.99; N, 22.19. Found: C, 60.41; H, 3.78; N, 22.03.

2-((5-Chloro-1H-benzo[d]imidazol-2-yl)amino)-N-(3-chlorophenyl)-4-methylpyrimidine-5-carboxamide (59h). Yield, 74 %; mp 255–256 °C. MS m/z = 413 (M$^+$). Anal. Calcd. for (C$_{19}$H$_{14}$N$_{6}$OCl$_2$): C, 55.22; H, 3.41; N, 20.34. Found: C, 55.03; H, 3.21; N, 20.25.

2-((1H-Benzol[d]imidazol-2-yl)amino)-N-(4-bromophenyl)-4-methylpyrimidine-5-carboxamide (59i). Yield, 82 %; mp 262–263 °C. MS m/z = 423 (M$^+$). Anal. Calcd. for (C$_{19}$H$_{16}$N$_{6}$OBr): C, 53.91; H, 3.57; N, 19.86. Found: C, 53.74; H, 4.18; N, 19.73.

2-((1H-Benzol[d]imidazol-2-yl)amino)-N-(2-methylphenyl)-4-methylpyrimidine-5-carboxamide (59j). Yield, 72 %; mp 286–287 °C. MS m/z = 358 (M$^+$). Anal. Calcd. for (C$_{20}$H$_{18}$N$_{6}$O): C, 67.02; H, 5.06; N, 23.45. Found: C, 67.18; H, 5.19; N, 23.34.

7.3 Conclusion

In present chapter, first time reported three component condensations of benzoimidazole-2-guanidines, orthoester and active methylene carbonyl compounds leading to several novel new chemical entities substituted-(1H-benzo[d]imidazol-2-yl)amino-pyrimidine derivatives. The biological activity of newly synthesized compounds is under investigation.
7.4 Representative Spectra

7.4.1 Mass Spectrum for compound 53a.

7.4.2 1H NMR Spectrum for compound 55b.
Chapter 7

7.4.3 1H NMR Spectrum for compound 55c.

D$_2$O exchange 1H NMR Spectrum for compound 55c.
7.4.4 1H NMR Spectrum for compound 55d.

D$_2$O exchange 1H NMR Spectrum for compound 55d.
7.4.5 \(^1\text{H} \) NMR Spectrum for compound 57.

7.4.6 \(^1\text{H} \) NMR Spectrum for compound 59e.
D$_2$O exchange 1H NMR Spectrum for compound 59e.

7.4.7 1H NMR Spectrum for compound 59f.
D$_2$O exchange 1H NMR Spectrum for compound 59f.

7.4.8 13C NMR Spectrum for compound 55d.
7.4.9 13C NMR Spectrum for compound 59f.

![13C NMR Spectrum](image)

7.4.10 Mass Spectrum for compound 55a.

![Mass Spectrum](image)
7.4.11 Mass Spectrum for compound 55g.

7.4.12 Mass Spectrum for compound 55h.
7.4.13 Mass Spectrum for compound 59e.

\[
\text{MW: 362.36}
\]

7.4.14 Mass Spectrum for compound 59g.

\[
\text{MW: 412.06}
\]
7.4.15 Mass Spectrum for compound 59j.

[Diagram of Mass Spectrum for compound 59j]

MW: 358.40

7.4.16 Mass Spectrum for compound 59k.

[Diagram of Mass Spectrum for compound 59k]

MW: 392.84
7.4.17 Mass Spectrum for compound 59l.

7.4.18 Mass Spectrum for compound 59m.
7.4.19 Mass Spectrum for compound 59n.
Table 7.3 Elemental analysis of compounds 55a–h and 59a–n.

<table>
<thead>
<tr>
<th>Compd.</th>
<th>MF</th>
<th>MW</th>
<th>CHN Calculated (%)</th>
<th>CHN Found (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>55a</td>
<td>C₁₄H₁₃N₅O</td>
<td>267.29</td>
<td>62.91</td>
<td>4.90</td>
</tr>
<tr>
<td>55b</td>
<td>C₁₄H₁₃N₅O₂</td>
<td>283.29</td>
<td>59.36</td>
<td>4.63</td>
</tr>
<tr>
<td>55c</td>
<td>C₁₅H₁₅N₅O₂</td>
<td>297.31</td>
<td>60.60</td>
<td>5.09</td>
</tr>
<tr>
<td>55d</td>
<td>C₁₅H₁₂N₅O₂F₃</td>
<td>351.28</td>
<td>51.29</td>
<td>3.44</td>
</tr>
<tr>
<td>55e</td>
<td>C₁₄H₁₂N₅OCl</td>
<td>301.73</td>
<td>55.73</td>
<td>4.01</td>
</tr>
<tr>
<td>55f</td>
<td>C₁₄H₁₂N₅O₂Cl</td>
<td>317.73</td>
<td>52.92</td>
<td>3.81</td>
</tr>
<tr>
<td>55g</td>
<td>C₁₅H₁₄N₅O₂Cl</td>
<td>331.76</td>
<td>54.30</td>
<td>4.25</td>
</tr>
<tr>
<td>55h</td>
<td>C₁₆H₁₇N₅O₂</td>
<td>311.34</td>
<td>61.72</td>
<td>5.50</td>
</tr>
<tr>
<td>59a</td>
<td>C₁₉H₁₆N₆O</td>
<td>344.37</td>
<td>66.27</td>
<td>4.68</td>
</tr>
<tr>
<td>59b</td>
<td>C₂₀H₁₇N₆O₂</td>
<td>374.40</td>
<td>64.16</td>
<td>4.85</td>
</tr>
<tr>
<td>59c</td>
<td>C₂₀H₁₇N₆O₂</td>
<td>374.40</td>
<td>64.16</td>
<td>4.85</td>
</tr>
<tr>
<td>59d</td>
<td>C₁₉H₁₅N₆OF</td>
<td>362.36</td>
<td>62.98</td>
<td>4.17</td>
</tr>
<tr>
<td>59e</td>
<td>C₁₉H₁₅N₆OF</td>
<td>362.36</td>
<td>62.98</td>
<td>4.17</td>
</tr>
<tr>
<td>59f</td>
<td>C₁₉H₁₅N₆OCl</td>
<td>378.82</td>
<td>60.24</td>
<td>3.99</td>
</tr>
<tr>
<td>59g</td>
<td>C₁₉H₁₅N₆OCl</td>
<td>378.82</td>
<td>60.24</td>
<td>3.99</td>
</tr>
<tr>
<td>59h</td>
<td>C₁₉H₁₄N₆OCl₂</td>
<td>413.26</td>
<td>55.22</td>
<td>3.41</td>
</tr>
<tr>
<td>59i</td>
<td>C₁₉H₁₅N₆OBr</td>
<td>423.27</td>
<td>53.91</td>
<td>3.57</td>
</tr>
<tr>
<td>59j</td>
<td>C₂₀H₁₆N₆O</td>
<td>358.40</td>
<td>67.02</td>
<td>5.06</td>
</tr>
<tr>
<td>59k</td>
<td>C₂₀H₁₇N₆OCl</td>
<td>392.84</td>
<td>61.15</td>
<td>4.36</td>
</tr>
<tr>
<td>59l</td>
<td>C₂₁H₂₀N₆O</td>
<td>372.42</td>
<td>67.73</td>
<td>5.41</td>
</tr>
<tr>
<td>59m</td>
<td>C₂₀H₁₅N₆OF₃</td>
<td>412.37</td>
<td>58.25</td>
<td>3.67</td>
</tr>
<tr>
<td>59n</td>
<td>C₂₀H₁₄N₆OF₃Cl</td>
<td>446.81</td>
<td>53.76</td>
<td>3.16</td>
</tr>
</tbody>
</table>
Section C

References
References

 b) Loria, R. *Ph.D.Thesis*, Saurashtra University **2005**.

 c) Acharya, H. *Ph.D.Thesis*, Saurashtra University **2005**.

 f) Dholakia, C. *Ph.D.Thesis*, Saurashtra University **2005**.

 g) Adlakha, P. *Ph.D.Thesis*, Saurashtra University **2005**.