CHAPTER 4
RESEARCH METHODOLOGY

4.1 INTRODUCTION

The study is defined to explore the performance of managers towards talent management and its impact to the automobile industries. This section focuses on the need for the study, objective of the study, statement of the problem, methods adopted to conduct the study and the type of the research. The data collection methods, sample, sample size and sampling methods are also discussed. This chapter explains the methods used in carrying out of the study, explains the need for the study, objectives of the study, statement of the problem and the period of the study, research design, sampling method, data sources and the statistical tools used to analyze the data.

4.2 NEED FOR THE STUDY

Talent Management has become a state of the art managerial technique in an organization, which wants to retain its own cadre. These days it is getting easy from the perspective of management to get freshers inducted to its own organization. However, it gets difficult to the same extent to retain them for a long run as opportunities for betterment of their career come flashing to them day by day once they acquire some knowledge on the system through training and practice at the cost of the employer. So, to cater to the need of the situation, people working at the top management should device out certain tools and techniques to retain them. The technique used may vary from industry to industry depending on the type of job that they are in, the nature of people that they are dealing with.
The reason behind leaving an organization is the feel of detachment in an employee from the objective and goal of an organization. The feel that employee is not being noticed by the persons who actually holds the key of his career development. The feel that someone else sitting at a level higher or somebody sitting at proximity close to the top management is taking the credit for the fabulous job that he has recently carried out and even not mentioning his name to the people who actually matters. It is known that, in an organization, many talented persons do not come to the surface due to their inherent nature. For example, big fishes do not come to the surface of the water and like to stay in deep water. However, a fisherman applies his techniques to catch big fishes and gets maximum benefit.

In many organizations, people try to be visible through networking, personal contacts, recommendations etc. They need not be truly extraordinary and talented but are often visible and are caught in the eyes of top management. They get advantage from the appraisal / promotion policies and reward system. However, most successful organizations try to search and encourage talented persons to be visible irrespective of their less interest in networking, contacts, self advertisement and cheap popularity etc.

Hence, many organizations, and good private companies try to harness maximum benefit from their employees through talent search and talent management. In an organization, many talented people come and join with a dream for achievement, success and career growth. But in the phase of their career, they realize and experience the true culture of the organization and many of them feel neglected and frustrated. They gradually lose interest, become non innovative, less participative and suffer from mental depression. Through Talent Management, attention can be given to all employees irrespective of their nature. Sincere and silent employees will not feel neglected. Fairness and transparency in the appraisal process can lead to satisfaction of employees and thereby least grievances.
For this, both controlling and reviewing officers need to be fully retrained to maintain rationality in the marking system.

An organization can achieve excellence and create an enabling environment only through its rich HR culture and one of the tools is Talent Management. Recognize talent: Notice what do employees do in their free time and find out their interests. Try to discover their strengths and interests. Also, encourage them to discover their own latent talents.

Attracting Talent Good companies create a strong brand identity with their customers and then deliver on that promise. Great employment brands do the same, with quantifiable and qualitative results. As a result, the right people choose to join the organization.

Selecting Talent Management should implement proven talent selection systems and tools to create profiles of the right people based on the competencies of high performers. It is not simply a matter of finding the best and the brightest, it is about creating the right fit both for today and tomorrow. Retaining Talent In the current climate of change, it's critical to hold onto the key people. These are the people who will lead the organization to future success, and one cannot afford to lose them. The cost of replacing a valued employee is enormous. Organizations need to promote diversity and design strategies to retain people, reward high performance and provide opportunities for development.

Managing Succession Effective organizations anticipate the leadership and talent requirement to succeed in the future. Leaders understand that it's critical to strengthen their talent pool through succession planning, professional development, job rotation and workforce planning. They need to identify potential talent and groom it. If the organization wishes to substantially strengthen its talent pool, it should be prepared to change things as
fundamental as the business strategy, the organization structure, the culture and even the
caliber of leaders in the organization.

Talent Management is on HR professional’s minds these days, as HR works to obtain, retain and develop manpower. For talent management to be effective, what is important is to hire employees who seem to be the best fit in the organization. Organizations are taking steps to manage talent most effectively and also to develop their own employer brand. These brands simplify decision-making and communicate the value they create for their customers. Likewise, employees also identify themselves with certain organizations especially in the light of forecasted labour shortage. Organizations that formally decide to "manage their talent" undertake a strategic analysis of their current HR processes. This is to ensure that a co-ordinate, performance oriented approach is adopted.

Quite often, of late, organizations are adopting a Talent Management approach and are focusing on co-coordinating and integrating various aspects, such as: Recruitment, Retention, Employee development, Leadership and "high potential employee" development, Performance management, Workforce planning and Culture. The researcher found from the present study that, there is a tremendous change in human resources in the past decades. The reasons behind are the changes in technology and global economic environment. Even though organizations are aware of the need for human talent they were neglecting it all these years without giving comprehensive outlook.

The novel economy is a different place from the aged one and requires a shift in value systems to become accustomed. To deal with this changing world the present age bracket needs to be aware of its contributions, developments and ability to manage both the present and future. Therefore, it is important for the organizations to develop adequate
and appropriate plans and put in efforts to attract the best pool of available candidates, and to nurture and retain the current employees.

A critical person holds crucial position in the organization and has the requisite skill level to perform the job. The topic A Study on Talent Management to Improve the Organizational Performance in Automobile Industries, Krishnagiri District, Tamilnadu, focuses on segregating the pivotal roles and picking out ways to retain people performing those roles. A survey has been conducted during the study to check the contentment and commitment level of critical talent management. The industries to do further research can utilize this research work. Interview method has been adopted to do the survey, based on various parameters of talent management.

4.3 OBJECTIVES OF THE STUDY

- To study talent management in general and in the automobile industry.
- To study the talent management practices adopted in the automobile industry.
- To find out the gap between talent management practices in vogue and the talent management best suited for the automobile industry.
- To find out the variables for the study of talent management in the automobile industry.
- To suggest talent management model for the automobile industry.

4.4 STATEMENT OF THE PROBLEM

In an automobile Industry, there is nothing more crucial than fitting the right employee in the right position. When people do job it is not that just suit their liking, inclination or temperament, the results, are rather the lack of them will be disastrously obvious. Low productivity, dissatisfaction, low morale, absenteeism and other negative
behavior will become typical till the employee is shown the door. Or perhaps, there is another option - Talent Management. Business searches for new and/or better means of achieving competitive advantage, the capacity of every functional area to improve organizational performance is under scrutiny. Although talent management practices may be applied in automobile industry, they can only contribute optimally to business performance for manager are aligned on its objectives and the way in which it is implemented in the organization. The managers in the subpart of Krishnagiri District, who are working in the automobile industry, have the fancy way of migration from the current location to metropolitan cities for their career growth and development. Based on the review of literature, it is identified that the talent management programs strive to develop and retain high potential employees, and thus provide organizations with talent management source and competitive human resource advantage, which will influence organizational performance. It has become necessary to identify and define the Critical Roles and Talent management in manager positions in automobile industry, Krishnagiri District and the researcher had conducted survey to analyze their talent management level. There has been recent attrition, low productivity, dissatisfaction, low morale, absenteeism and other negative behavior in the industry and attrite talent has been extremely talented in terms of their role and skill levels. This study facilitates to identify the reasons for its increased managers turnover Automobile Industry, Krishnagiri District and to take corrective action.

4.5 RESEARCH METHODOLOGY

4.5.1 Research Design

Research design is the conceived plan and structure of investigation to obtain answers to research. The research type adapted to this study is exploratory research.
Exploratory research describes data and characteristics about the population or phenomenon being studied. The study describes managers ideas towards talent management and performance impact and understands the reasons behind it.

4.5.2 Sampling Design

Sampling design includes the sampling unit, sample population, sample method employed and the determination of sample size. The sampling unit includes the places where the study was conducted. The study was conducted in Krishnagiri District.

The population of the study consists of 1780(100%) managers in various functional departments from 20 automobile industries in and around Krishnagiri District. Majority (%) of respondents were highly-educated, qualified. On the other hand, they were cooperative and ready to spend time to respond to the study. This made the researcher adopts the probability sampling method that gives flexibility to approach, only those who are ready to spend time and respond to the questionnaire.

Totally, 45 % (800) copies of questionnaire were administered among the managers of automobile industries in different regions of the study area. The actual sample size was estimated at 800. The researcher decided to collect the number of sample from Krishnagiri District and proceeded with data collection. However, 35 % (276) questionnaires were incomplete and the remaining 65% questionnaires were complete and used for the study. Therefore, the sample size for the study is 524.
Table 4.1 Distribution of Sample Respondents in the Study area to the managers

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the company</th>
<th>No of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sundaram Auto Components</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Sundaram Clayton Ltd</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Sundaram Fasteners Ltd</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>Harita Seating System Ltd</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>TVS Motors Ltd</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Luk India Private Ltd</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Ashok Leyland Ltd Plant-I</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>AVTEC Ltd</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Caterpillar India(P) ltd</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Thaisummit Neel Auto Pvt Ltd</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Bimetal Bearings Ltd</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>Ashok Leyland Ltd Plant-II</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Kamaz Vectra Motors Ltd</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Knit vel India(P) Ltd</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Minda Industries Ltd</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>Weg Industries(P) Ltd</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>Wendt India Ltd</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>Thirumala CNC and Lasting Pvt Ltd</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>Numann Industries</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>Rajsriya Automotive Industries(P)Ltd</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>524</td>
</tr>
</tbody>
</table>
4.5.3 Methods of Data Collection

The focus of this research is to study the talent management and its impact in automobile industries staffs and employees performance level. Data for the study were collected through the primary and secondary sources.

4.5.3.1 Primary Data

The major source of the data used to carry out the analysis is primary data. Field survey method was employed to collect the primary data from the selected 524 respondents with the help of a well framed questionnaire. 20 companies were the original data was collected from the respondents and the respondents participated in the pilot study were asked to fill the questionnaire and express their opinions. From that some questions were modified and arranged as per the importance. Since the study focuses on identifying the staffs and employees’ performance towards talent management and its impact, it is felt by the researcher that this approach is relevant and may provide appropriate results. Care was taken in wording the questions in the questionnaire because poorly worded questions can cause respondents to report miscomprehension even though they actually comprehend the message.

In case of respondents who were not having clarity, the researcher briefed about the questions and clarity was created before filling. The doubts raised by the respondents were clarified then and there by the researcher. Respondents with varying background were selected based on the important demographic aspects like age, gender, educational qualification, marital status, experience and different functional departments for this study.
4.5.3.2 Secondary Data

The secondary data used in this study were collected from the national and international journals, magazines, articles and other records. The latest information related to the study was gathered from the libraries in Bangalore, Chennai, Coimbatore and Salem. Websites and portals were also used to collect some statistical information on Krishnagiri district. A number of standards textbooks in the area of HRM, Talent Management and Research Methodology were also referred to present the theoretical perspective. The brief profile of the district is given in this chapter. The material related to the importance given to the talent management and its impact were also collected and presented in the respective chapter.

4.5.4 Discussions and Informal Interviews

In order to know the talent management pattern of the automobile industries, several rounds of discussion were held with the staffs and employees, other functional departments and research supervisor.

4.5.5 Tools of Data Collection and Measurement of Variables

Questionnaire was the main tool used to collect the data. The research problem and the questionnaire were framed accordingly with the help of literatures and in consultation with research supervisor and the research experts. The questionnaire also includes the questions together information on demographic details of the respondents, perception and opinion on talent management and its impact for individual performance, influencing factors and its impact on the organization.
Data has been collected based on the following different dimensions & parameters / variables namely:

<table>
<thead>
<tr>
<th>ATTRACTION</th>
<th>RETENTION</th>
<th>MOTIVATION</th>
<th>DEVELOPMENT</th>
<th>SUCCESION PLANNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recruitment</td>
<td>1. Leadership</td>
<td>1. Interpersonal skill</td>
<td>1. Training</td>
<td>1. Focus on policies, procedures, practices</td>
</tr>
<tr>
<td>4. Culture</td>
<td></td>
<td></td>
<td>4. Reward</td>
<td></td>
</tr>
</tbody>
</table>

4.5.6 Construction of Questionnaire

The key aspect of the present research was identified through the preliminary interviews with some selected respondents. The questionnaire so drafted was circulated among some research experts, senior managers and research scholars for a critical view with regard to wording, format, sequence and the like. The questionnaire re-drafted in light of their comments.

4.5.7 Pre-Testing and Pilot Study

The questionnaire distributed to 30 respondents for pre testing and pilot study was conducted. Pretesting was done to ensure reliability and validity of the questionnaire. It was done to check whether the instrument was correctly framed in an understandable manner. Taking into consideration the suggestions of the selected sample respondents, necessary modifications and changes were incorporated in the questionnaire after the pilot
study. The respondents included in the pilot study were not included as samples for the final study.

4.5.8 Statistical Tools Used for Analysis

Appropriate research tools used to analyze the data. The data was checked for its validity and reliability and statistical tools used for analysis are, Descriptive statistics, ANOVA, Chi-square, Reliability test, Correlation method, Regression, Cluster analysis, Confirmatory Factor Analysis (SEM).

4.5.8.1 Mean

Probably the most often used descriptive statistic is the mean or average score in a set of data. The mean is a particularly informative measure of the "central tendency" of the variable (set of scores) if it is reported along with its confidence intervals (related to the variability among the scores). The confidence intervals for the mean give us a range of values around the mean where we expect to find the "true" (population) mean (with a given level of certainty). This concept is also useful to understand researchers when they point to "levels of significance" between two or more means.

4.5.8.2 Standard Deviation

In statistics and probability theory, standard deviation (represented by the symbol \(\sigma \)) shows how much variation or "dispersion" exists from the average (mean, or expected value). A low standard deviation indicates that the data points tend to be very close to the mean; high standard deviation indicates that the data points are spread out over a large range of values.

The standard deviation of a random variable, statistical population, data set, or probability distribution is the square root of its variance. It is algebraically simpler though
practically less robust than the average absolute deviation. A useful property of standard
development is that, unlike variance, it is expressed in the same units as the data. Note,
however, that for measurements with percentage as unit, the standard deviation will have
percentage points as unit. In addition to expressing the variability of a population, standard
development is commonly used to measure confidence in statistical conclusions.

4.5.8.3 Regression

The most common type of regression analysis is linear regression. There are two
kinds of linear regression: simple linear regression, and multiple linear regressions. Simple
linear regression is one dependent variable and one independent variable. Multiple linear
regressions are when you have one dependent variable and two or more independent
variables.

The regression analysis procedure tests the null hypothesis that the slope parameter
of the independent variable is 0 versus the alternative hypothesis that the slope parameter
is different than 0. If the p-value for the test is less than 0.05 (level of significance), the
null hypothesis is rejected and it is concluded that there is a statistically significant
association between the dependent variable and the independent variable. In that case, the
model may be used to make predictions of the dependent variable.

4.5.8.4 Chi-Square Test

Chi square is a statistical test commonly used to compare observed data with data
we would expect to obtain according to a specific hypothesis. According to Snedecor and
Cochran(1989), chi-square test is used to test if a sample of data came from a population
with a specific distribution.
The formula used is

\[X^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}} \]

4.5.8.5 Reliability Test: Cronbach's Alpha

Cronbach's alpha is a coefficient of internal consistency. It is commonly used as an estimate of the reliability of a psychometric test for a sample of examinees. It was first named alpha by Lee Cronbach in 1951, as he had intended to continue with further coefficients. The measure can be viewed as an extension of the Kuder–Richardson Formula 20 (KR-20), which is an equivalent measure for dichotomous items. Alpha is not robust against missing data. Later researchers to designate other measures used in a similar context have used several other Greek letters. Somewhat related is the average variance extracted (AVE).

Cronbach's \(\alpha \) is defined as

\[
\alpha = \frac{N}{N - 1} \left(1 - \frac{\sum_{i=1}^{N} \sigma_{Y_i}^2}{\sigma_X^2} \right)
\]

Where \(N \) is the number of components (items or testlets), \(\sigma_X^2 \) is the variance of the observed total test scores, and \(\sigma_{Y_i}^2 \) is the variance of component \(i \).

Alternatively, the standardized Cronbach's \(\alpha \) can also be defined as

\[
\alpha = \frac{N \cdot \bar{c}}{\bar{v} + (N - 1) \cdot \bar{c}}
\]

Where \(N \) is the number of components, \(\bar{v} \) equals the average variance and \(\bar{c} \) is the average of all covariances between the components.
4.5.8.6 Correlation

Correlation refers to any of a broad class of statistical relationships involving dependence. Familiar examples of dependent phenomena include the correlation between the physical statures of parents and their offspring, and the correlation between the demand for a product and its price. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling; however, statistical dependence is not sufficient to demonstrate the presence of such a causal relationship (i.e., Correlation does not imply causation).

Formally, dependence refers to any situation in which random variables do not satisfy a mathematical condition of probabilistic independence. In loose usage, correlation can refer to any departure of two or more random variables from independence, but technically it refers to any of several more specialized types of relationship between mean values. There are several correlation coefficients, often denoted ρ or r, measuring the degree of correlation. The most common of these is the Pearson correlation coefficient, which is sensitive only to a linear relationship between two variables (which may exist even if one is a nonlinear function of the other). Other correlation coefficients have been developed to be more robust than the Pearson correlation – that is, more sensitive to nonlinear relationships.

4.5.8.7 Analysis of Variance (ANOVA)

In statistics, Analysis of Variance (ANOVA) is a collection of statistical models, and their associated procedures, in which the observed variance in a particular variable is
partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are all equal, and therefore generalizes t-test to more than two groups. Doing multiple two-sample t-tests would result in an increased chance of committing a type I error. For this reason, ANOVAs are useful in comparing two, three, or more means.

4.5.8.8 Cluster Analysis

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics.

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be achieved by various algorithms that differ significantly in their notion of what constitutes a cluster and how to efficiently find them. Popular notions of clusters include groups with small distances among the cluster members, dense areas of the data space, intervals or particular statistical distributions. Clustering can therefore be formulated as a multi-objective optimization problem. The appropriate clustering algorithm and parameter settings depend on the individual data set and intended use of the results. Cluster analysis as such is not an automatic task, but an iterative process of knowledge discovery or interactive multi-objective optimization that involves trial and failure. It will often be necessary to modify data preprocessing and model parameters until the result achieves the desired properties.

Besides the term clustering, there are a number of terms with similar meanings, including automatic classification, numerical taxonomy, botryology and typological
analysis. The subtle differences are often in the usage of the results: while in data mining, the resulting groups are the matter of interest, in automatic classification primarily their discriminative power is of interest. This often leads to misunderstandings between researchers coming from the fields of data mining and machine learning, since they use the same terms and often the same algorithms, but have different goals.

4.5.8.9 Structural Equation Modeling

Structural equation modeling (SEM) is a statistical technique for testing and estimating causal relations using a combination of statistical data and qualitative causal assumptions. This definition of SEM was articulated by the geneticist Sewall Wright (1921), the economist Trygve Haavelmo (1943) and the cognitive scientist Herbert A. Simon (1953), and formally defined by Judea Pearl (2000) using a calculus of counterfactuals.

Structural Equation Models (SEM) allows both confirmatory and exploratory modeling, meaning they are suited to both theory testing and theory development. Confirmatory modeling usually starts out with a hypothesis that gets represented in a causal model. The concepts used in the model must then be operationalized to allow testing of the relationships between the concepts in the model. The model is tested against the obtained measurement data to determine how well the model fits the data. The causal assumptions embedded in the model often have falsifiable implications, which can be tested against the data. With an initial theory, SEM can be used inductively by specifying a corresponding model and using data to estimate the values of free parameters. Often the initial hypothesis requires adjustment in light of model evidence. When SEM is used purely for exploration, this is usually in the context of exploratory factor analysis as in psychometric design.
Among the strengths of SEM is the ability to construct latent variables: variables which are not measured directly, but are estimated in the model from several measured variables each of which is predicted to 'tap into' the latent variables. This allows the modeler to explicitly capture the unreliability of measurement in the model, which in theory allows the structural relations between latent variables to be accurately estimated. Factor analysis, path analysis and regression all represent special cases of SEM. In SEM, the qualitative causal assumptions represented by the missing variables in each equation, as well as vanishing covariance’s among some error terms. These assumptions are testable in experimental studies and must be confirmed judgmentally in observational studies.

When SEM is used as a confirmatory technique, the model must be specified correctly based on the type of analysis that the researcher is attempting to confirm. When building the correct model, the researcher uses two different kinds of variables, namely exogenous and endogenous variables. The distinction between these two types of variables is whether the variable regresses on another variable or not. As in regression, the Dependent Variable (DV) regresses on the independent variable, meaning that the IV is predicting the DV. In SEM terminology, other variables regress on exogenous variables, but exogenous variables never regress on other variables. In a directed graph of the model, an exogenous variable is recognizable as any variable from which arrows only emanate, where the emanating arrows denote which variables that exogenous variable predicts. Any variable that regresses on another variable is defined to be an endogenous variable, even if other variables regress on it. In a directed graph, an endogenous variable is recognizable as any variable receiving an arrow. It is important to note that SEM is more general than regression. In particular, a variable can act as both independent and dependent variable.

Two main components of models are distinguished in SEM: the structural model showing potential causal dependencies between endogenous and exogenous variables, and
the measurement model showing the relations between latent variables and their indicators. Exploratory and Confirmatory factor analysis models, for example, contain only the measurement part, while path diagrams can be viewed as SEMs that contain only the structural part.

In specifying pathways in a model, the modeler can posit two types of relationships: free pathways, in which hypothesized causal relationships between variables are tested, and therefore are left 'free' to vary, and relationships between variables that already have an estimated relationship, usually based on previous studies, which are 'fixed' in the model.

A modeler will often specify a set of theoretically plausible models in order to assess whether the model proposed is the best of the set of possible models. Not only must the modeler account for the theoretical reasons for building the model as it is, but the modeler must also take into account the number of data points and the number of parameters that the model must estimate to identify the model. An identified model is a model where a specific parameter value uniquely identifies the model, and no other equivalent formulation can be given by a different parameter value. A data point is a variable with observed scores, like a variable containing the scores on a question or the number of times respondents buy a car. The parameter is the value of interest, which might be a regression coefficient between the exogenous and the endogenous variable or the factor loading. If there are fewer data points than the number of estimated parameters, the resulting model is "unidentified", since there are too few reference points to account for all the variance in the model. The solution is to constrain one of the paths to zero, which means that it is no longer part of the model.
4.5.9 INTERPRETATION AND COMMUNICATION

The set of models are then interpreted so that claims about the constructs can be made, based on the best fitting model. Caution should always be taken when making claims of causality even when experimentation or time-ordered studies have been done. The term causal model must be understood to mean "a model that conveys causal assumptions," not necessarily; a model that produces validated causal conclusions. Collecting data at multiple time points and using an experimental or quasi-experimental design can help rule out certain rival hypotheses but even a randomized experiment cannot rule out all such threats to causal inference. Good fit by a model consistent with one causal hypothesis invariably entails equally good fit by another model consistent with an opposing causal hypothesis. No research design, no matter how clever, can help distinguish such rival hypotheses, save for interventional experiments.

4.5.10 HYPOTHESES TEST

Hypothesis testing based on One way ANOVA

To find significant difference on Talent Management Process across various level of Demographic variables

HO: There is no significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) among different level of Age groups (21-30 years, 31-40 years, 40-50 years and Above 50 years)

HA: There is significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning)
between different level of Age groups (21-30 years, 31-40 years, 40-50 years and Above 50 years)

HO: There is no significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between Gender (Male vs. Female)

HA: There is significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between Gender (Male vs. Female)

HO: There is no significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between Marital Status (Single vs. Married)

HA: There is significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between Marital Status (Single vs. Married)

HO: There is no significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between different level of Education (PG, UG, Diploma, ITI and Others)

HA: There is significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between different level of Education (PG, UG, Diploma, ITI and Others)
HO: There is no significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between different level of present Experience (1-2 years, 3-5 years, Above 5 years)

HA: There is significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between different level of present Experience (1-2 years, 3-5 years, Above 5 years)

Hypothesis testing based on one way ANOVA derived from Cluster Analysis

To find significant difference among the clusters of the respondents based on Talent management process constructs.

HO: There is no significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between different level of Clusters (High, Medium and Low)

HA: There is significant difference on various stages of Talent management process (Attraction, Retention, Motivation, Development and Succession Planning) between different level of Clusters (High, Medium and Low)

Hypothesis testing based on Path Analysis using SEM

To find Talent management process constructs has formed based on various dimensions such as Attraction, Retention, Motivation, Development and Succession Planning

HO: There is no significant formation of various dimensions such as Attraction, Retention, Motivation, Development and Succession Planning on Talent management process
HA: There is significant formation of various dimensions such as Attraction, Retention, Motivation, Development and Succession Planning on Talent management process

4.6 SCOPE OF THE STUDY

Talent management helps organization to make most of the strengths and talents of their employees. Talent management has a number of benefits to offer such as employee engagement, retention, aligning to strategic goals in order to identify the future leadership of the organization, increase productivity, culture of excellence and much more. Many companies today do not have a ‘talent strategy’ in place despite companies acknowledging the fact that talent is an important issue. In many organizations there is a lack of workforce planning with the approach to accessing talent ad hoc poorly coordinated across the business. It is crucial that talent management system be put in place for building organizations. Competition is global, capital is abundant, ideas are developed quickly – all that matters is the planning and finding of talent. Not much research data is available on this critical issue. This has promoted me to take up this research work.

Talent management is a key succession planning tool that provides an integrated means of identifying, selecting, developing and retaining top talent within our organization which is required for long term planning. Talent management provides a means of accelerating the development of employees by identifying opportunities for career growth and development within the organization, identifying internal talent pools and transferring knowledge to others within the organization, evaluating and planning for the projected departure of positions identified as critical for reasons of retirement or otherwise

Talent management consists of identifying the right persons for appropriate performance, alignment of the right person to the right work, ensuring stability with smooth succession in the enterprises, closing talent gaps, constituting management team,
motivating senior management to confront poor performance and re-enforcing personnel and professional accountability along with the performance management.

In the recent days, the HR Department of any organization is vested with the responsibility of managing the Talent in addition to its conventional function of providing good human capital to an organization. In order to perform this function, they use the following methods viz., Identifying the Talent which is required, Right Selection of the Talent, Implementing competitive compensation plans, Training and continual development of Competencies, practicing state-of-the-art performance appraisal systems, aligning the acquired Talent, Developing and nurturing the Talent, and Retaining the Talent. The scope of Talent Management is quite wide and adopts an integrative approach to the functions mentioned above. The purpose is to have a synergistic effect between the various activities so as to ensure a maxi-maxi effect.

4.7 PERIOD OF THE STUDY

The duration of the research is between 2009 and 2013. Primary data for the study collected through a structured questionnaire in the years 2011 and 2012. Secondary data was collected from different publications, reports, websites, magazines, journals, newspapers, and other published sources. Various literatures from 1986 to 2012 were collected, reviewed and presented in Chapter 2.

4.8 LIMITATIONS OF THE STUDY

The study suffers from the following limitations. The research survey conducted only in Krishnagiri district of Tamilnadsu. Hence, the results arrived may not be applied to other states. Further, the survey method, which adopted, for collecting the data in this study has its own limitations.
Out of the population, only 524 managers of automobile industries were selected for eliciting first-hand information. In view of the time and monetary constraints, it was not possible to contact more than the selected number of respondents. Hence, the generalization of the findings of the study is subject to these limitations.

4.9 CHAPTER SCHEME

- The first chapter deals with the introduction and theoretical aspects of the study.
- The second chapter presents the related review of literature both at national and international level.
- The third chapter gives the general profile of the study area including selected companies.
- The fourth chapter focuses the research methodology of the study.
- The fifth chapter covers the analysis of evaluating the effectiveness of talent management in automobile industry in Krishnagiri District.
- The sixth chapter recapitulates the key findings, suggestions and gives a comprehensive conclusion of the study.