LIST OF CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: REVIEW OF LITERATURE

2.1 General Background

2.2 Economic Impact

2.3 The Treatment Recommended by WHO for Drug Resistant Malaria

2.4 The World Scenario of Demand, Supply and Cost of Artemisinin Based Combination Therapies (ACTs)

2.5 Artemisinin: Structure, Biological Function and Source

2.5.1 Structure

2.5.2 Biological Functions

2.5.3 Source

2.5.3.1 Artemisia annua L.

2.5.3.1.1 Origin

2.5.3.1.2 Morphology and Floral Biology

2.5.3.1.3 Ecology

2.5.3.1.4 Distribution of Artemisinin in A. annua L. Plants

2.5.3.1.4.1 Organ Specific Distribution

2.5.3.1.4.2 Phenological Stage Specific Distribution

2.6 Terpenoid Biosynthesis

2.6.1 Mevalonate (MVA) Pathway

2.6.2 Alternate Pathway (DXP/Rohmer pathway)

2.6.3 Compartmentation and Cross-Talk of the
Isoprenoid Biosynthesis Pathway

2.6.4 Biosynthesis of artemisinin 21

2.7 Production vs. Supply of Artemisinin for ACTs 23

Production

2.8 Approaches for Enhanced Production of 28
Artemisinin

2.8.1 Non-Tansgenic Efforts 28

2.8.1.1 Chemical Synthesis 28

2.8.1.2 Cell, Tissue and Hairy Root Culture 29

2.8.2 Heterologous Production of Artemisinin 33

2.8.3 Artemisinin Production from Bioengineered 37
Artemisia annua L. Plants

CHAPTER 3: MATERIALS AND METHOD 42-81

3.1 Experimental Materials 42

3.1.1 Chemicals and Reagents 42

3.1.2 General Chemicals 42

3.1.3 Radioactive Chemicals 42

3.1.4 Natural Product 43

3.1.5 Other Materials 43

3.1.6 Plasmid DNA Vectors 43

3.1.6.1 pDrive easy vector 43

3.1.6.2 pCambial305.1 43

3.1.7 Bacterial Strain 43

3.1.8 Custom Primers Used 43

3.1.9 NUTRIENT MEDIA 44

3.1.9.1 YEM (Yeast Extract Manitol) Medium 44

3.2 Genomic DNA Extraction 44

3.3 PCR Amplification 46

3.3.1 Preparation of Master Mixture for PCR 46
Amplification

3.4 Agarose Gel Electrophoresis 47
3.5 Purification of PCR Product 47
3.6 Cloning of Amorpha-4, 11-Diene Synthase Gene 48
3.6.1 Ligation 48
3.6.2 Preparation of Competent Cells 49
3.6.3 Transformation of E. coli-DH5α 50
3.6.4 Blue/White Screening of Transformed E. coli DH5α 50

3.7 Validation of Transformed E. coli DH5α Through Plasmid Isolation and Restriction Analysis 51

3.8 In silico Characterization of ads Gene 52
3.8.1 Sequencing of Amorpha-4, 11-Diene Synthase (ads) gene 52
3.8.2 Domain/Motif Search 53
3.8.3 Phylogenetic Tree 53
3.8.4 Homology Modeling of ADS 53
3.8.4.1 Template Searching 53
3.8.4.2 Sequence Alignment 54
3.8.4.3 Refinement and Validation of Predicted Structure 54
3.8.5 Docking of ADS 54

3.9 Cloning of ads gene in T-DNA Based Plant Expression Vector pCambia1305.1 55
3.9.1 Preparation of Insert and Vector 55
3.9.2 Ligation 56
3.9.3 Transformation of E. coli. DH5α with the recombinant expression vector pCambia-ads 56
3.9.4 Cloning of HMG CoA Reductase Gene (hmgr) in pCambia-ads Construct 56
3.9.5 Mobilization of Recombinant pCambia-hmg-s-abs into Agrobacterium tumefaciens (EHA105)

3.9.6 Preparation of Competent Cells of Agrobacterium tumefaciens strain EHA105

3.9.7 Transformation of Agrobacterium tumefaciens EHA105

3.9.8 Validation of Transformants

3.9.9 Plasmid Isolation from Transformed Agrobacterium tumefaciens EHA105

3.10 Genetic Transformation of Artemisia annua L. by Agrobacterium tumefaciens EHA105

3.10.1 Plant Material

3.10.2 Tissue Culture Media

3.10.3 Antibiotics and Hormones

3.10.4 Maintenance of Culture Conditions

3.10.5 Seed Germination

3.10.6 Antibiotic Sensitivity Test

3.10.7 Optimization of Age of Explants

3.10.8 Optimization Bacterial Strain and Suspension Duration

3.10.9 Optimization of Co-cultivation Condition

3.10.10 Co-cultivation of Artemisia annua L. Leaf Explants

3.10.11 Selection and Regeneration of Transformants

3.10.12 Acclimatization of Artemisia annua L. Plantlets

3.11 Molecular Analysis of Putative Transformants

3.11.1 Genomic DNA Extraction

3.11.2 PCR Analysis

3.11.3 Southern Hybridization
3.11.3.1 Preparation of Probes

3.11.3.2 Non-radioactive Labeling of hptII gene Probe by Dioxigenin (DIG) Method

3.11.3.3 Restriction Digestion of Genomic DNA of Artemisia annua L.

3.11.3.4 Resolving DNA Samples on Agarose Gel

3.11.3.5 Transferring DNA to a Membrane through Capillary Transfer Method

3.11.3.6 Pre-hybridizing the Blot with DIG Easy Hybridization Buffer

3.11.3.7 Hybridizing the DIG-labeled DNA Probe to DNA on the Blot

3.11.3.8 Chromogenic Method for Detection of Probes on the Blot

3.11.3.8.1 Localizing the Probe-Target Hybrids with Anti-DIG

3.11.3.8.2 Visualizing Probe-Target Hybrids with NBT/BCIP

3.11.4 Isolation of total RNA from transgenic Artemisia annua L. plants

3.11.4.1 RNA Isolation

3.11.4.2 Quantification of RNA

3.11.5 RT-PCR Analysis of Total RNA from Artemisia annua L. Plants

3.12 Analysis of Physiological and Biochemical Parameters of in vitro grown wild type and Transgenic Lines of A. annua L. plants.

3.12.1 Length of Shoot and Root

3.12.2 Fresh Weight and Dry Weight of Shoot and Root

3.12.3 Estimation of Chlorophyll Content

3.12.4 Soluble Protein Content
3.12.4.1 Preparation of reagents 74
3.12.4.2 Extraction of Total Soluble Protein 75
3.12.4.3 Estimation of Total Soluble Protein 75
3.12.5 HMG-CoA Reductase Assay 75
3.12.5.1 Preparation of Microsomal Enzyme Suspension 76
3.12.5.2 Assay Procedure 77
3.12.6 Estimation of Total Mevalonate Pool 77
3.12.6.1 Plant Materials and Reagents 77
3.12.6.2 Preparation of Calibration Curve 78
3.12.6.3 Sample Preparation and Quantification of MVAL 79
3.12.7 Assay of Amorpha-4, 11-Diene 80
3.12.7.1 Preparation of Crude Enzyme Amorpha-4, 11-Diene Synthase Extracts 80
3.12.7.2 Enzyme Assay for Amorpha-4, 11-Diene Synthase 80
3.12.8 Measurement of Artemisinin 81

CHAPTER 4: RESULTS 82-129

4.1 Isolation, Cloning and in silico Characterization of Amorpha-4, 11-diene Synthase Gene (ads) from A. annua L.
4.1.1 Amplification of ads Gene from Genomic DNA of Artemisia annua L. Plants 82
4.1.2 Cloning of ads Gene into pDrive Cloning Vector 82
4.1.3 Sequencing of Cloned DNA Fragment 82
4.1.4 Sequence analysis 84
4.1.5 3D structure of ADS protein 90
4.1.6 Prediction of Domain/Motif 91
4.1.7 Docking Studies of Amorpha-4, 11-Diene (ACL15394) 99
4.2 Construction of Recombinant Binary Vector, 103
4.5.7 Artemisinin 124
4.6 Biochemical Analysis of A. annua L. Plants grown in Polyhouse 124
4.6.1 HMG-CoA Reductase Activity 124
4.6.2 Mevalonate Content 124
4.6.3 Amorpha-4, 11-Diene Synthase (ADS) Activity 125
4.6.4 Artemisinin Content (%) and Yield (mg plant^-1) 125

CHAPTER 5: DISCUSSION 131-147
5.1 Analysis of the Nucleotide and Protein Sequences of ADS 134
5.1.1 Molecular Modeling and Docking 135
5.2 Genetic Transformation of Artemisia annua L. 137
5.2.1 Regeneration of Artemisia annua L. 138
5.2.2 Factors Influencing Genetic Transformation of A. annua L. 138
5.2.2.1 Pre-culture of Explants 138
5.2.2.2 Agrobacterium tumefaciens Strain and Vector 138
5.2.2.3 Genotype of A. annua L. Plant and Type of Explants Used in Co- Cultivation 139
5.2.2.4 Agrobacterium Density, Infection Time and Co- Cultivation Period 140
5.2.2.5 Antibiotics 140
5.3 Molecular Analysis of Transgenic Plants 142
5.3.1 PCR Analysis 142
5.3.2 Southern Analysis 142
5.3.3 Analysis of expression of hmgr and ads 142
5.4 Influence of Transgenes hmgr and ads on Growth of A. annua L. Plants 144
5.5 HMG-CoA Reductase, Amorpha-4, 11-Diene 144
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Artemisinin-based combination therapy</td>
</tr>
<tr>
<td>ADS</td>
<td>Amorpha-4,11-diene synthase enzyme</td>
</tr>
<tr>
<td>ads</td>
<td>Amorpha-4,11-diene synthase gene</td>
</tr>
<tr>
<td>BAP</td>
<td>Benzene amino purine</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>CCC</td>
<td>Covalently closed circular DNA</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>Cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>C-TAB</td>
<td>Cetyl trimethyl ammonium bromide</td>
</tr>
<tr>
<td>cv./cvs.</td>
<td>Cultivar/s</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan multiple range test</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy ribose nucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diaminetetraacetate</td>
</tr>
<tr>
<td>g/l</td>
<td>Grams per litre</td>
</tr>
<tr>
<td>gDNA</td>
<td>Genomic DNA</td>
</tr>
<tr>
<td>HMGR</td>
<td>Hydroxy methyl glutaryl coenzyme A reductase</td>
</tr>
<tr>
<td>hmgR</td>
<td>Hydroxy methyl glutaryl coenzyme A gene</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>hptII</td>
<td>Hygromycin phosphotransferase gene</td>
</tr>
<tr>
<td>hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobase pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Kn</td>
<td>Kinetin</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>min.</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Milli molar</td>
</tr>
<tr>
<td>Mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribose nucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog</td>
</tr>
<tr>
<td>MVA</td>
<td>Mevalonic acid</td>
</tr>
<tr>
<td>NAA</td>
<td>Naphthalene acetic acid</td>
</tr>
<tr>
<td>NOS</td>
<td>Nopaline opine synthase</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>pH</td>
<td>-log/ [H+]</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribose nucleic acid</td>
</tr>
<tr>
<td>RNase A</td>
<td>Ribonuclease A</td>
</tr>
<tr>
<td>Rpm</td>
<td>Rotations per minute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase polymerase chain reaction</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>sec.</td>
<td>Second</td>
</tr>
<tr>
<td>SIM</td>
<td>Shoot-induction medium</td>
</tr>
<tr>
<td>SISM</td>
<td>Shoot-induction selection medium</td>
</tr>
<tr>
<td>sp.</td>
<td>Species</td>
</tr>
<tr>
<td>SSC</td>
<td>Saline sodium citrate</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA buffer</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume/volume</td>
</tr>
<tr>
<td>var.</td>
<td>Variety</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/volume</td>
</tr>
<tr>
<td>YEM</td>
<td>Yeast extract manitol</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2,4-Dichlorophenoxy acetic acid</td>
</tr>
<tr>
<td>µM</td>
<td>Micro molar</td>
</tr>
<tr>
<td>µl</td>
<td>Micro litre</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

Figure. 1:	Global pattern of malaria distribution	7
Figure. 2:	*Artemisia annua* L. at pre-flowering stage, structure of artemisinin, its derivatives and biological function	11
Figure. 3:	Global distribution pattern and cultivation of *Artemisia annua* L. plants	13
Figure. 4:	Distribution of artemisinin in field grown *Artemisia annua* L. plants at various phonological stages	16
Figure. 5:	Isoprenoid biosynthetic pathway	19
Figure. 6:	Artemisinin biosynthetic pathway	27
Figure. 7:	Schematic representation of the engineered artemisinic acid biosynthetic pathway in *S. cerevisiae* strain EPY224 expressing CYP71AV1 and CPR	36
Figure. 8:	Diagramatic representation of pDrive vector with cloned *ads* gene	49
Figure. 9:	Restriction map of pCambia-*hmgr-ads* recombinant plasmid	59
Figure. 10:	Genomic DNA of *Artemisia annua* L	83
Figure. 11:	PCR amplification of amorpha-4, 11-diene synthase gene (*ads*).	83
Figure. 12:	Restriction digestion of pDrive-*ads* clone	84
Figure. 13:	Multiple sequence alignment of genomic clone of *ads* gene (FJ432667) with other *ads* from different databases	86-89
Figure. 14: Genomic organisation of cloned Amorpha-4,11-diene synthase gene (ads, FJ432667) from A. annua L. Numbers shown below the lines are the start and end positions of exons.

Figure. 15: Multiple sequence alignment of ADS protein (ACL15394) deduced from the nucleotide sequence of cloned ads (FJ432667) with existing amorpha-4, 11-diene synthase proteins.

Figure. 16: Evolutionary relationships among nucleotide sequences of ads gene (FJ432667) and other sesquiterpene synthase genes of 13 taxa using the Neighbor-Joining method.

Figure. 17: Alignment of deduced amino acid sequence of ADS (ACL15394) from with epi-aristolochene synthase (SeauA) from tobacco. The consensus sequence shows amino acid residues conserved in above sequence.

Figure. 18: The Predicted of 3D model of Amorpha-4, 11-diene synthase (ACL15394) developed from nucleotide sequence of ads (FJ432667) showing N (blue) and C (red) terminals.

Figure. 19: An energy minimized Ramachandran plot for ADS protein (ACL15394) derived from nucleotide sequence of ads (FJ432667).

Figure. 20: The docking of ligand (FPP) in cavities of six top ranking binding sites of receptor molecule (ADS, ACL15394).

Figure. 21: Amorpha-4, 11-diene synthase (ADS) protein (ACL15394) docked with FPP.

Figure. 22: Recombinant and non recombinant pCambia DNA resolved on 0.8% agarose gel.

Figure. 23: PCR amplification of hmgr and ads genes from recombinant pCambia.
Figure. 24: Sensitivity of leaf explants to various concentrations of hygromycin

Figure. 25: Co-cultivation of Artemisia annua L. leaf explants infected with Agrobacterium tumefaciens on MS basal medium

Figure. 26: Shoot induction in transformed leaf explants of Artemisia annua L. plants inoculated on shoot induction selection medium (SISM) after co-cultivation with A. tumefaciens EHA105 harbouring pCambia-hmgr-ads

Figure. 27: Induction of roots after 2 weeks of culture on rooting medium (MS+0.5mg/L NAA)

Figure. 28: Transgenic Artemisia annua L. Plants during hardening process in polyhouse

Figure. 29: Transgenic (a-c) and non-transgenic (d-e) Artemisia annua L. plants growing in polyhouse

Figure. 30: PCR analysis of genomic DNA of transgenic and non-transgenic Artemisia annua L. for the presence of hptll gene

Figure. 31: Southern blot analysis of genomic DNA of transgenic and non-transgenic A. annua L. digested with EcoRI and hybridized with an hptll specific gene probe

Figure. 32A: Reverse Transcriptase-PCR analysis of total RNA from transgenic and non-transgenic A. annua L. with hmgr specific primers

Figure. 32B: Reverse transcriptase-PCR analysis of total RNA from transgenic and non-transgenic A. annua L. with ads specific primers

Figure. 33 HMGR activity in non-transgenic (W) and transgenic plants of A. annua L. Values in parentheses are percent enhancements of HMGR activity in transgenic plants over non-transgenic
plants

Figure. 34	ADS activity in non-transgenic (W) and transgenic plants of *A. annua* L. Values in parentheses are percent enhancement of ADS activity in transgenic plants over non-transgenic plants.	123
Figure. 35A	Calibration curve of artemisinin	126
Figure. 35B	HPLC chromatogram of artemisinin extracted from the leaves of transgenic *A. annua* L. plants	126
Figure. 36	Artemisinin content in the leaves of non-transgenic (W) and transgenic lines of *A. annua* L. Values in parentheses indicate fold enhancements in artemisinin content in transgenic lines (TR) over non-transgenic (W) plants	127
Figure. 37A	Calibration curve of mevalonate (MVA)	128
Figure. 37B	TLC- chromatogram of MVA ($R_f=0.76$)	128
Figure. 37C	3D view of TLC chromatogram of leaf extracts from transgenic and non-transgenic *A. annua* L. plants	128
The content (%), average yield (Kg ha⁻¹), demand and production of artemisinin at global level and in India by 2010-2011.

Distribution of artemisinin in different organs of greenhouse and field grown Artemisia annua L. plants, determined by HPLC-EC.

Genes encoding enzymes of mevalonate pathway, alternate pathway and artemisinin biosynthetic pathway.

Statistical and observed values of ADS protein (ACL15394) derived from cloned ads (FJ432667) of Artemisia annua L.

Domain position and description of ADS protein (ACL15394) derived from nucleotide sequence of ads (FJ432667) cloned from A. annua L.

The energy values binding sites in ADS (ACL15394).

The binding sites of ADS (ACL 15394) with lowest energy of interaction between binding site and the ligand molecules (FPP).

Shoot length (cm.) and number of leaves plant⁻¹ in non-transgenic and transgenic plants of A. annua L. on second, fourth and sixth week of culture on rooting medium.

Root length (cm.) and number of roots plant⁻¹ in non transgenic and transgenic plants of A. annua L. on second, fourth and sixth week of culture on rooting medium.

Biomass accumulation (dw plant⁻¹) by transgenic.
and non-transgenic plants of *Artemisia annua* L. on second, fourth and sixth week of culture on rooting medium

Table 11: Total chlorophyll contents (mg gfw⁻¹) in the leaves of transgenic and non-transgenic plants of *A. annua* L. on second, fourth and sixth week of culture on rooting medium

Table 12: Total soluble protein (mg gfw⁻¹) in transgenic and non-transgenic plants of *A. annua* L. on second, fourth and sixth week of culture on rooting medium

Table 13: HMGCR activity in the leaves of transgenic (TR) and non-transgenic (W) plants of *A. annua* L. grown in polyhouse

Table 14: Mevalonate (MVA) content in the leaves of non-transgenic (W) and transgenic *A. annua* L. plants grown in polyhouse

Table 15: Amorpha-4,11-diene synthase (ADS) activity in the leaves non-transgenic (W) and transgenic *A. annua* L. plants grown in polyhouse

Table 16: Artemisinin content (%) in the leaves of non-transgenic (W) and transgenic *A. annua* L. plants grown in polyhouse

Table 17: Artemisinin yield of non-transgenic (W) and transgenic *A. annua* L. plants grown in polyhouse