Explanation of plates and figures in the text

Plate - 1

Fig.1: Map of Madhya Pradesh showing the study area.
Plate - 2

Fig. 2: Map of Sonar river with different sampling stations.
Plate - 3

Fig. 3: Photograph of first sampling station Umaria (A1).
Fig. 4: Photograph of second sampling station Kesli (A2).
Plate - 4

Fig. 5: Photograph of third sampling station Gourjhamar (A3).
Fig. 6: Photograph of fourth sampling station Rehli (A4).
Plate - 5

Fig. 7: Photograph of fifth sampling station Garhakota (A5).
Plate - 6

Fig. 8: Monthly variations in Temperature (°C) at different sampling stations.
   Fig. 8 A- Surface          Fig. 8 B- Depth
   Plate - 7

Fig. 9: Seasonal variations of Temperature (°C) at different stations (at surface and depth).
   Plate - 8

Fig.10: Monthly variations in Conductivity (μmho) at different sampling stations.
   Fig. 10 A- Surface          Fig. 10 B- Depth
   Plate - 9

Fig.11: Seasonal variations of Conductivity (μmho) at different stations (at surface and depth).
   Plate - 10

Fig.12: Monthly and seasonal variations in Secchi transparency (cm) at different sampling stations.
   Fig. 12 A - Monthly variations       Fig. 12 B - Seasonal variations
   Plate - 11

Fig.13: Monthly variations in Turbidity (NTU) at different sampling stations.
   Fig. 13 A- Surface          Fig. 13 B- Depth
   Plate - 12

Fig.14: Seasonal variations of Turbidity (NTU) at different stations (at surface and depth).
   Plate - 13

Fig.15: Monthly variations in pH (pH) at different sampling stations.
   Fig. 15 A- Surface          Fig. 15 B- Depth
   Plate - 14

Fig.16: Seasonal variations of pH (pH) at different stations (at surface and depth).
   Plate - 15

Fig.17: Monthly variations in Total alkalinity (mg/L) at different sampling stations.
   Fig. 17 A- Surface          Fig. 17 B- Depth
   Plate - 16

Fig.18: Seasonal variations of Total alkalinity (mg/L) at different stations (at surface and depth).
   Plate - 17

Fig.19: Monthly variations in Carbonate (mg/L) at different sampling stations.
   Fig. 19 A- Surface          Fig. 19 B- Depth

IV
Fig. 20: Seasonal variations of Carbonate (mg/L) at different stations (at surface and depth).
Plate - 18

Fig. 21: Monthly variations in Bicarbonate (mg/L) at different sampling stations.
Fig. 21 A- Surface Fig. 21 B- Depth
Plate - 20

Fig. 22: Seasonal variations of Bicarbonate (mg/L) at different stations (at surface and depth).
Plate - 21

Fig. 23: Monthly variations in Acidity (mg/L) at different sampling stations.
Fig. 23 A- Surface Fig. 23 B- Depth
Plate - 22

Fig. 24: Seasonal variations of Acidity (mg/L) at different stations (at surface and depth).
Plate - 23

Fig. 25: Monthly variations in CO₂ (mg/L) at different sampling stations.
Fig. 25 A- Surface Fig. 25 B- Depth
Plate - 24

Fig. 26: Seasonal variations of CO₂ (mg/L) at different stations (at surface and depth).
Plate - 25

Fig. 27: Monthly variations in DO (mg/L) at different sampling stations.
Fig. 27 A- Surface Fig. 27 B- Depth
Plate - 26

Fig. 28: Seasonal variations of DO (mg/L) at different stations (at surface and depth).
Plate - 27

Fig. 29: Monthly variations in BOD (mg/L) at different sampling stations.
Fig. 29 A- Surface Fig. 29 B- Depth
Plate - 28

Fig. 30: Seasonal variations of BOD (mg/L) at different stations (at surface and depth).
Plate - 29

Fig. 31: Monthly variations in COD (mg/L) at different sampling stations.
Fig. 31 A- Surface Fig. 31 B- Depth
Plate - 30

Fig. 32: Seasonal variations of COD (mg/L) at different stations (at surface and depth).
Plate - 31

Fig. 33: Monthly variations in Total hardness (mg/L) at different sampling stations.
Fig. 33 A- Surface Fig. 33 B- Depth
Plate - 32

Fig. 34: Seasonal variations of Total hardness (mg/L) at different stations (at surface and depth).
Plate - 33

Fig. 35: Monthly variations in Calcium (mg/L) at different sampling stations.
Fig. 35 A- Surface Fig. 35 B- Depth
Plate - 34

Fig. 36: Seasonal variations of Calcium (mg/L) at different stations (at surface and depth)
Plate - 35

Fig. 37: Monthly variations in Magnesium (mg/L) at different sampling stations.
Fig. 37 A- Surface Fig. 37 B- Depth
Plate - 36

Fig. 38: Seasonal variations of Magnesium (mg/L) at different stations (at surface and depth).
Plate - 37

Fig. 39: Monthly variations in Sulphate (mg/L) at different sampling stations.
Fig. 39 A - Surface Fig. 39 B - Depth
Plate - 38

Fig. 40: Seasonal variations of Sulphate (mg/L) at different stations (at surface and depth).
Plate - 39

Fig. 41: Monthly variations in Chloride (mg/L) at different sampling stations.
Fig. 41 A - Surface Fig. 41 B - Depth
Plate - 40

Fig. 42: Seasonal variations of Chloride (mg/L) at different stations (at surface and depth).
Plate - 41

Fig. 43: Monthly variations in Sodium (mg/L) at different sampling stations.
Fig. 43 A - Surface Fig. 43 B - Depth
Plate - 42

Fig. 44: Seasonal variations of Sodium (mg/L) at different stations (at surface and depth).
Plate - 43

Fig. 45: Monthly variations in Potassium (mg/L) at different sampling stations.
Fig. 45 A - Surface Fig. 45 B - Depth
Plate - 44

Fig. 46: Seasonal variations of Potassium (mg/L) at different stations (at surface and depth).
Plate - 45

Fig. 47: Panoptic view- Seasonal variations of different physico-chemical parameters at Umaria (A1).
Plate - 46

Fig. 48: Panoptic view- Seasonal variations of different physico-chemical parameters at Kesli (A2).
Plate - 47

Fig. 49: Panoptic view- Seasonal variations of different physico-chemical parameters at Gourjhamar (A3).
Plate - 48

Fig. 50: Panoptic view- Seasonal variations of different physico-chemical parameters at Rehli (A4).
Plate - 49

Fig. 51: Panoptic view- Seasonal variations of different physico-chemical parameters at Garhakota (A5).
Plate - 50

Fig. 52: Monthly variations of phytoplanktons at different stations.
Fig. 52 A - Cyanophyceae Fig. 52 B - Chlorophyceae
Plate - 51

Fig. 52: Monthly variations of phytoplanktons at different stations.
Fig. 52 C - Bacillariophyceae Fig. 52 D - Euglenophyceae
Plate - 52

Fig. 53: Monthly variations of zooplanktons at different stations.
Fig. 53 A - Rotifera Fig. 53 B - Copepoda
Plate - 53

Fig. 53: Monthly variations of zooplanktons at different stations.
Fig. 53 C - Cladocera Fig. 53 D - Protozoa
Plate - 54
Plate - 54
Fig.53: Monthly variations of zooplanktons at different stations.
   Fig.53 E - Ostracoda

Plate - 55
Fig.54: Pie diagrams - Seasonal variations (percentage of different groups of Phytoplanktons).
   Fig.54 A - Rainy Fig. 54 B - Winter Fig. 54 C - Summer

Plate - 56
Fig.55: Pie diagrams - Seasonal variations (percentage of different groups of Zooplanktons).
   Fig.55 A - Rainy Fig.55 B - Winter Fig.55 C - Summer
   Plate - 57 (CYANOPHYCEAE)

Plate - 58 (CYANOPHYCEAE)
Fig.56: Chroococcus sp.
Fig.57: Oscillatoria chalybea
Fig.58: Oscillatoria curviceps

Fig.59: Nostoc commune
Fig.60: Nostoc paludosum
Fig.61: Anabaena oryzae
Fig.62: Anabaena sphaerica

Plate - 59 (CHLOROPHYCEAE)
Fig.63: Volvox globater
Fig.64: Ulothrix zonata
Fig.65: Ulothrix terrestre
Fig.66: Cladophora fracta

Plate - 60 (CHLOROPHYCEAE)
Fig.67: Pithophora varia
Fig.68: Chaetophora elegans
Fig.69: Zygnema majus
Fig.70: Oedogonium pussillum

Plate - 61 (BACILLARIOPHYCEAE)
Fig.71: Melosira sp.
Fig.72: Fragilaria sp.
Fig.73: Asterionella sp.

Plate - 62 (BACILLARIOPHYCEAE)
Fig.74: Synedra capitata
Fig.75: Navicula viridula
Fig.76: Navicula pupula
Fig.77: Pinnularia braunii

Plate - 63 (BACILLARIOPHYCEAE)
Fig.78: Pinnularia tabellaria
Fig.79: Gomphonema sp.
Fig.80: Cymbella aequalis

Plate - 64 (EUGLENOPHYCEAE)
Fig.81: Euglena acus
Fig.82: Phacus longicauda

Plate - 65 (ROTIFERA)
Fig.83: Keratella tropica
Fig.84: Keratella cochlearis

VII
Fig.85: Brachionus caudatus
Fig.86: Brachionus angularis

Fig.87: Brachionus havanaensis
Fig.88: Notholca acuminata
Fig.89: Platyias quadricornis
Fig.90: Anuraeopsis fissa

Fig.91: Trichocerca longiseta
Fig.92: Gastropus stylifer
Fig.93: Rotaria sp.
Fig.94: Scaridium longicaudum
Fig.95: Polyarthra vulgaris

Fig.96: Synchaeta pectinata
Fig.97: Asplanchna brightwelli
Fig.98: Asplanchnopus multiceps
Fig.99: Monostyla bulla

Fig.100: Cyclops viridis
Fig.101: Nauplius larva
Fig.102: Diaptomus sp.
Fig.103: Neodiaptomus sp.

Fig.104: Daphnia longispina
Fig.105: Ceriodaphnia reticula
Fig.106: Moina sp.

Fig.107: Sida sp.
Fig.108: Diaphanosoma sp.
Fig.109: Leydigia sp.
Fig.110: Bosmina sp.

Fig.111: Diffugia corona
Fig.112: Paramecium caudatum
Fig.113: Paramecium bursaria

Fig.114: Cypris sp.
Fig.115: Stenocypris sp.

Fig.116: A panoptic view- Seasonal variation in the mean values of physicochemical parameters.

Fig.117: A panoptic view- Seasonal variation in the mean values of Biological parameters.

Plate - 66 (ROTIFERA)
Plate - 67 (ROTIFERA)
Plate - 68 (ROTIFERA)
Plate – 69 (COPEPODA)
Plate - 70 (CLADOCERA)
Plate - 71 (CLADOCERA)
Plate - 72 (PROTOZOA)
Plate - 73 (OSTRACODA)
Plate -74
Plate -75
This is to certify that

Mr./Ms. AKHILESH KUMAR JAIN (92ISC2413)

has participated in 92nd Indian Science Congress

held at Nirma University of Science & Technology, Ahmedabad

during January 3-7, 2005
28th February 2005

CERTIFICATE

This is to certify that Mr. Akhilesh Jain has participated/presented in the paper titled ____________________________ from the Zoology Department. Co-authored by ____________________________ at the seminar held on National Science Day-2005.

Prof. J.L. Jain
Convenor

Dr. D.P. Singh
Kulpati
The Indian Science Congress Association  
14, Dr. Biresh Guha Street,  
Kolkata -- 700 017  

Participation Certificate

This is to certify that Prof./Dr./Shri./Smt. AKHILESH KUMAR JAIN.....  

Dept. of Zoology of Dr. H.S. Gaura University, Sagar, M.P.  

[Environmental Science]  

______________________________________________________________  

participated in the 93rd Indian Science Congress held at Acharya N. G. Ranga  
Agricultural University, Hyderabad, January 3 to 7, 2006.  

His / Her Membership no is ..............  

Date ..............  

____________________________  

Office Seal  

General Secretary  
(Signature)
The Indian Science Congress Association
14, Dr. Biresh Guha Street,
Kolkata -- 700 017

Paper Presentation Certificate

This is to certify that Mr. Afzal Shaikh, Jatin
of Dr. H.S. Gour, Univ. Sagar,
has presented a Paper (Oral/Poster) entitled Study of Physicochemical
- \textit{Sagar} in the Section of Environmental Science

during the 94th Indian Science Congress held at Annamalai University, Annamalainagar, Chidambaram,
from January 3 to 7, 2007.

His/Her Membership no is \textit{A.15.80-...W.O.V.}

Date \textit{06.01.07}

Office Seal

Sectional President

(Signature)
The Indian Science Congress Association
14, Dr. Biresh Guba Street,
Kolkata -- 700 017

Participation Certificate

This is to certify that Prof./Dr./Shri./Smt. ____________________________

of ____________________________ Workshop on ____________________________

participated in the 94th Indian Science Congress held at Annamalai University,
Annamalainagar, Chidambaram, from January 3 to 7, 2007.

His / Her Membership no is ____________________________

Date ____________________________

Office Seal
General Secretary
(Signature)
The Indian Science Congress Association
14, Dr. Biresh Guha Street,
Kolkata – 700 017

Participation Certificate

This is to certify that Prof./Dr./Shri./Smt. Akhilesh Jain
Research Sch. of Department of Zoology
Dr. H.S. Gaur University, Sagar (M.P.)
participated in the 95th Indian Science Congress held at Andhra University,
Visakhapatnam, from January 3 to 7, 2008.
His/Her Membership no is A.5320-W0X

Date 06-01-2008

[Signature]
General Secretary
Office Seal
STUDY OF DIURNAL PROFILE OF SOME PHYSICO-CHEMICAL PARAMETERS OF DUHELA POND AT RAHATGARH
Abha Jain, Akhilesh Jain & S. Bhargava
Department of Zoology
Dr. H. S. Gour University, Sagar 470003 (M.P.)

ABSTRACT

Diurnal profile of some of the physico-chemical parameters of Duhela pond at Rahatgarh Distt. Madhya Pradesh were studied. For such study the physico-chemical parameters selected were pH, water temperature, dissolved oxygen, free carbon dioxide, chloride total hardness, calcium magnesium, alkalinity, carbonate and bicarbonate. The study was made on 5th August 6th August 2004 by random sampling method at an interval of 4 hours commencing from 0800h for the duration of 24 hours. i.e. 08.00h, 12.00h, 16.00h, 20.00h in total samples were analysed. pH recorded highest at 16.00h and lowest at 04.00h while the water temperature was measured highest at 12.00h and lowest at 20.00h. The dissolved oxygen (DO) reporting highest values at 12.00hrs. and lowest at 20.00hrs. showing direct relationship with the temperature. The values of free carbon-di-oxide showed inverse relationship with dissolved oxygen and carbonate, magnesium directed relationship with the total hardness. Some what same type the results were observed with carbonate and bicarbonates. Values of pH showing direct relation with total alkalinity but inverse relation with carbonate values.

Key Words: Diurnal, physico-chemical temperature, Duhela pond.

HYDROBIOLOGICAL STUDY OF THE RIVER
SONAR SAGAR (M.P.) INDIA
Akhilesh Jain, Abha Jain & S. Bhargava
Department of Zoology
Dr. H. S. Gour University, Sagar 470003 (M.P.)

ABSTRACT

The present paper deals with the seasonal variations of physico-chemical factors in the river sonar M.P. India was investigated for the period between Jan (2004) to May (2005) Parameters was analyzed from three sampling solutions along the sonar river Three stations were selected to take water samples, these are Umaria, Gourjhamar and Garhakota. Among the water quality Parameters of river sonar its middle stretch during Jan 2004to May 2005, the tempera tar (16.5-21.60C) was found to be factor having profound influence over the Hydrobiological parameters including fish and other aquatic life. Water samples of the river sonar were analyzed for water and atmospheric tem prater, pH, Conductivity, TDS, turbidity, CO2 DO, BOD, COD, Alkalinity, Total hardness (Calcium, Magnesium) Chloride (Carbonate, bicarbonate)

Key words- Limnology, Fish fauna, Physico-chemical

STUDY OF PHYSICO-CHEMICAL CHARACTERISTICS OF THE RIVER BINA IN DISTRICT SAGAR
Akhilesh Jain, Abha Jain & S. Bhargava
Department of Zoology
Dr. H. S. Gour University, Sagar 470003 (M.P.)

ABSTRACTS

Investigations were made to study the physico-chemical parameters of the river Bina at three different station i.e. Baneti, Triveni and Kankalkheri, to determine the extent of pollution on the basis of physico-chemical parameters such as pH, temperature, turbidity, dissolved oxygen(DO), carbon dioxide (CO2) total alkalinity, carbonate, bicarbonate, total hardness, (calcium, magnesium hardness) chloride, BOD, COD etc. It is in attempt to get the complete picture of water quality of Bina river at these selected study were collected during the month of June (2004) to Nov. (2004).

Key Words: physico-chemical parameters, Bina river.