Bibliography

Acar, O., Kilic, Z. and Turker, A.R. (2000). Determination of lead in cookies by electrothermal atomic absorption spectrometry with various chemical modifiers; *Food-Chemistry*; 71 (1); 117-122.


Berthelsen, B.O., Steiness, E., Solberg, W. and Jingsen, L. (1995). Heavy metal concentrations in plants in relation to atmospheric heavy metal deposition; *Journal of Environmental Quality*; 24 (5); 1018-1026.


Chakrabarthy, M.M. (1981). Impact of chemical industry on environment; Science Culture; 47.


Colognesi, M., Abollino, O., Aceto, M., Sarzanini, C. and Mentasti, E (1997). Flow injection determination of lead and cadmium traces with graphite furnace atomic absorption spectrometry; *Talanta*; 44(5); 867-875 (Eng); Elsevier.


Eklund, M. (1995). Cadmium and lead deposition around a Swedish battery plant as recorded in oak tree rings; *Journal of Environmental Quality*; 24; (1); 126-131.

Fazeli, M.S., Khosravan, F., Hosseini, M., Sathyanarayan, S. and Satish, P.N. (1998) Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore district, Karnataka, India; *Environment-Geology*; 34(4); 297-302.


Hagemayer, J. and Hubner, C. (1999). Radial distribution of lead in stems of six year-old spruce trees (*Picea abies* (L.) karst.) grown for two years in lead contaminated soil; *Water-Air-and-Soil-Pollution*; 111 (1-4); 215-224.


Kagaya, Shigehiro. and Ueda, Joichi. (1997). Determination of lead (II) by electrothermal atomization atomic absorption spectrometry after co-precipitation with gallium (III) phosphate; *Bull. Chem. Soc. Jpn.*, 70(6); 1379-1383 (Eng); Chemical society of Japan.


Kikovic, D.D. (1997). Influence of heavy metals emitted by thermoelectrical power plants and chemical industry on Kosovo soils microflora; *Review - of - Research - Work - at - the - Faculty - of - Agriculture, -Belgrade*; 42(1); 81-75.


Ma, Renli, and Adams, Freddy. (1996). Flow injection sorbent extraction with dialkyl dithio phosphates as chelating agent for the determination of cadmium, copper and lead by flame atomic absorption spectrometry; Spectrochim. Acta. Part B; 51B(14); 1917-1923 (Eng); Elsevier.


Narukawa, Tomohiro, Uzawa, Atsushi, Yoshimura, Wataru And Okutani, Tadao. (1997). Effect of cobalt as a chemical modifier for the determination of lead by electrothermal atomic absorption spectrometry using a tungsten furnace; *J. Anal. At. Spectrom.*, 12(7); 781-784 (Eng); Royal society of chemistry.


Nyangababo, J.T. (2001). Trace metal concentrations in squirrel (Sciurus vulgans) and black rat (Rattus munda) inhabiting roadside ecosystem; *Bull. Environ. Contam. Toxicol.*, 66; 714 - 718.


Petrikova, V., Ustjak, S. and Roth, J. (1995). Heavy metal contamination of agricultural crops and soils in five regions of the Czech Republic differing in pollution emissions; *Rostlinna-Vyroba*; 41 (1); 17-23.


Qureshi, M. and Khan, F. (1967). Separation of zirconium (IV) and thorium (IV) from each other and from numerous metal ions by aqueous paper chromatography; *Anal. Chem.*, 39 (11); 1329-1331.


Santha, K. and Nanda Kumar, N.V. (2001). Qualitative detection of selenium in fortified soil and water samples by a paper chromatographic-carboxyl esterase enzyme inhibition technique; *Journal of Chromatography A*; 919; 223-226.

Sarkar, B. (1976). In: *An Introduction to Bioinorganic Chemistry*; (D.R. Williams and Charles C. Thomas; Eds); U.S.A.


Tra, H.T.L. and Egashira, K. (1999). Heavy metal status of agricultural soils in Tulem and Thanhtn districts of Handi city, Vietnam; *Journal-of-the-Faculty-of-Agriculture,-Kyushu-University*; 43 (3 - 4); 489 - 497


Wilcke, W., Muller, S., Kanchanacool, N. and Zech, W. (1998). Urban soil contamination in Bangkok: Heavy metal and aluminium partitioning in top soils; *Geoderma*; 86 (3 - 4); 211-228.


Xu, Yuping. and Liang, Yanzhong. (1997). Combined nickel and phosphate modifier for lead determination in water by electrothermal atomic absorption spectrometry; *J. Anal. At. Spectrom.*, 12(4); 471-474 (Eng); Royal society of chemistry.
