LIST OF FIGURES
AND TABLES
LIST OF FIGURES AND TABLES

CHAPTER-1

Figure 1. 1: Prostatic Zones .. 2
Figure 1. 2: histology of normal prostate gland .. 2
Figure 1. 3: Prostate gland cells organization and their identity markers .. 3
Figure 1. 4: Prenatal to postnatal morphology and development of prostate ... 4
Figure 1. 5: Age dependant Testosterone level in human ... 5
Figure 1. 6: semen volume portion distribution ... 6
Figure 1. 7: Steroid hormone action through specific receptors during prostatic development 7
Figure 1. 8: Conversion of testosterone into dihydrotestosterone (DHT) .. 8
Figure 1. 9: AR Gene Structure .. 9
Figure 1. 10: AR signaling in cell .. 10
Figure 1. 11: ER signalling in cell ... 10
Figure 1. 12: Prostatic disorders ... 12
Figure 1. 13: Pathological conditions of prostate ... 13
Figure 1. 14: Benign prostate hyperplasia ... 13
Figure 1. 15: Epithelial- stromal interaction in the prostate .. 18
Figure 1. 16: Comparative histology ... 27
Figure 1. 17: Shared risk factors between BPH and PCa ... 27

Table 1. 1: Composition and significance of Prostatic fluid ... 6
Table 1. 2: Different models to study BPH pathogenesis: Benefits and drawbacks ... 21
Table 1. 3: Molecular alterations in BPH and PCa ... 28

CHAPTER-3

Figure 3. 1: Time dependent effect of a single dose of cadmium.. 51
Figure 3. 2: Age dependent effect of a single dose of cadmium on rat prostate ... 52
Figure 3. 3: Age dependent effect of a single dose of cadmium at GSH and LPO level ... 53
To Understand The Etiopathogenesis of Benign Prostate Hyperplasia at Biochemical, Cellular and Molecular level.

Figure 3.4: Age dependent histological changes of a single dose of cadmium... 54

Figure 3.5: Histological evaluation .. 55

Figure 3.6: Effect of a single dose of cadmium on castrated rat prostate.. 55

Figure 3.7: Effect of a single dose of cadmium along with steroid hormone receptor antagonist on prostate weight and prostatic acid phosphatase activity... 56

Figure 3.8: Histological changes in rat prostate of a single dose of cadmium treated group along with antagonistst.. 56

Figure 3.9: Effect of a single dose of cadmium on prostatic genes expression profile in presence of antagonists... 57

Figure 3.10: Effect of a single dose of cadmium on expression profile of ki-67 and AR on rat prostate in the presence of antagonists by immunofluorescence... 59

Figure 3.11: Effect of a single dose of cadmium on expression profile of vimentin and e-cadherin on rat prostate in the presence of antagonists by immunofluorescence... 60

Table 3.1: Histological analysis of Cd treated rat prostate gland.. 49

Table 3.2: Reverse Transcriptase-PCR Primers Sequence and Annealing temperature................................. 50

CHAPTER-4(A)

Figure 4(A).1: Isolation and characterization of isolated prostate cells from BPH patient 78

Figure 4(A).2: Characterization of isolated prostate cells. ... 79

Figure 4(A).3: FACS analysis of cell surface markers of isolated prostate cells... 81

Figure 4(A).4: Isolated prostate cells express pluripotent stem cell markers ... 82

Figure 4(A).5: Ectodermal cell lineages differentiation of prostate cells... 83

Figure 4(A).6: Oil O red staining of isolated prostate cells after culture ... 83

Figure 4(I).7: Alizarin red S staining of isolated prostate cells after culture .. 84

Figure 4(I).8: Alcian blue staining of isolated prostate cells after culture... 85

Figure 4(A).9: Endodermal cell lineages differentiation of isolated prostate cells... 85

Figure 4(A).10: Teratoma formation in vivo. .. 86

Table 4(A).1: Primer Sequence and annealing temperature .. 74
CHAPTER 4(B)

Figure 4(B). 1: Determination of Cd cytotoxic concentrations ... 99
Figure 4(B). 2: Growth curve .. 100
Figure 4(B). 3: Morphological analysis ... 101
Figure 4(B). 4: Cell cycle analysis ... 102
Figure 4(B). 5: Gene expression profile ... 103
Figure 4(B). 6: Desitometric analysis of Gene expression profile ... 104
Figure 4(B). 7: Protein expression ... 105
Figure 4(B). 8: Densitometric analysis of protein expression ... 105
Figure 4(B). 9: FACS analysis of p63 protein expression level in cells .. 106
Figure 4(B). 10: Immunocytochemistry of AR and ER-α .. 107
Figure 4(B). 11: Immunocytochemistry of ki-67 ... 108
Figure 4(B). 12: Wound healing assay .. 109
Figure 4(B). 13: Zone of clearance in Gelatin Zymography gel for MMPs ... 110
Figure 4(B). 14: Densitometry fo Zymography gel .. 110

Table 4(B). 1: Primer Sequence and annealing temperature .. 96
Table 4(B). 2: Doubling time of Cadmium treated and MNU treated cells ... 99

CHAPTER 5

Figure 5. 1: PCR amplification and restriction digestion patterns gel .. 123
Figure 5. 2: Genotype correlation of smokers v/s non-smokers in control and patients 128
Figure 5. 3: Gene expression of AR, PSA, 5α Reductase and ERβ .. 129
Figure 5. 4: Genotype Phenotype correlation of AR, PSA, ERβ and 5α Reductase genes 130
Figure 5. 5: Protein profile of AR and p63 genes ... 130
Figure 5. 6: Correlation of AR and p63 protein expression with AR genotype .. 131

Table 5. 1: Polymorphisms studied in the study ... 120
Table 5. 2: Gene specific Primers sequence for SNP study .. 122
To Understand The Etiopathogenesis of Benign Prostate Hyperplasia at Biochemical, Cellular and Molecular level.

Table 5.3: PCR conditions for prostate genes ... 122

Table 5.4: Restriction endonucleases and their recognition sites .. 123

Table 5.5: Association studies for the androgen receptor (AR) gene A/G polymorphism .. 125

Table 5.6: Association studies for the Prostate Specific Antigen (PSA) gene A/G polymorphism 126

Table 5.7: Association studies for the Estrogen Receptor-β (ER- β) gene A/G polymorphism 126

Table 5.8: Distribution of AR, PSA and ERβ Genotypes .. 126
ANNEXURE-I

PROSTATE DISORDERS – QUESTIONNAIRE

Department of Biochemistry
Faculty of Science
The M.S University of Baroda
Vadodara- 390002

DATE: ___________ SERIAL CODE: ____________
INVIGILATOR: ________________

PERSONAL DETAILS:
Name: ____________________________
Age: ________ years.
Education: ____________________________
Address: ____________________________
Phone: ________________
Native: ____________________________
Diet: Vegetarian/ Non-vegetarian/ Omnitarian
Additive Habits: Tobacco/ Smoking/ Alcohol/ Others: ____________
Occupation: ____________________________
Q- Are you exposed to a pollutant(s) at your work place or at your place of residence? Yes/No
If yes, nature of pollutant: Land/ Water/ Air/ Others: ____________

HISTORY OF ANY MAJOR ILLNESS:
Q- Are you suffering from any lifestyle disorder(s)? Yes/No
If yes, nature of disorders: Diabetes/ Obesity/ Cholesterol disorder/
Cardiac disorder/ other: ____________
Symptoms associated: ____________________________
Duration of disorder: ____________________________

Q- What made you suspect that you have a prostatic disorder?

Q- Anyone in your family ever detected with a prostatic disorder? Yes/No
If yes, first / second / third degree relative. Relation: ____________
To Understand The Etiopathogenesis of Benign Prostate Hyperplasia at Biochemical, Cellular and Molecular level.

PROSTATIC DISORDER(S):
Diagnosis (tick):
[] PSA screening (if yes, level: _________ ng/ml blood/ serum)
[] Digital rectal examination (DRE)
[] Trans rectal ultrasound (TRUS)
[] Prostate needle biopsy
[] Others: ____________________

Suspected Prostatic Disorder (tick):
[] Prostatitis (if yes, State: acute / chronic)
[] Benign prostatic hyperplasia (if yes, state: mild / moderate / severe)
[] Prostatic cancer (if yes, state: Benign/ Metastatic ________
 [] Prostate Intra-epithelial Neoplasia (PIN) Grade: I / II / III
 [] Gleason grading stage: 1/2/3/4/5, Gleason score: __+__= ___)

Any other associated symptoms? Yes/No
If yes, symptoms __

Treatment (tick):
[] Antiandrogenic drugs (if yes, which: ____________________)
[] Any other drug (if yes, nature: ____________, which: ___________)
[] Transurethral resection of the prostate (TURP)
[] Laser removal of the diseased portion
[] Complete removal of the whole prostate gland

Post treatment recovery: excellent / good / poor / no response
Post treatment side effects / symptoms (if any): ____________________

General comment:__

POST EXAMINATION RESULTS OF THE SAMPLE:
Protein level: _____________ µg/ g tissue
ACP level: ______________ µ moles PNP formed/min/l tissue
SOD activity: ______________ enzyme required for 50% inhibition Pyrogallol autoxidation
Catalase activity: ____________ mmoles of H2O2 decomposed/ min/g Tissue
LPO level: _______________ nmoles of MDA formed / mg Protein
GPx activity: ______________ ∆ log (GSH)/ min / mg protein
GSH level: _________________ mg/ g tissue
Vitamin E: _________________ µg/ g tissue or µg/ ml serum
Vitamin C: _________________ µg/ ml or µg/ g tissue serum
Cd level: _________________ µg/ g tissue
Zn level: _________________ µg/ g tissue
Pd level: _________________ µg/ g tissue

I, .. have understood the aim of this study and willing to donate 3 ml blood sample for this purpose.

Patient’s signature
Date: