Figure 1.1 Spectral Range of Spectroscopic methods used in spectroscopy ... 20
Figure 2.1 Schematic Diagram of an Infrared Spectrophotometer ... 47
Figure 2.2 Analysis of IR spectroscopy data ... 47
Figure 2.3 Different molecular orbital transitions .. 49
Figure 2.4 Essential elements of UV-Vis Spectrophotometer ... 50
Figure 2.5 Schematic Diagram of UV-Vis Spectrophotometer ... 52
Figure 2.6 Tauc’s plot of Indirect and Direct energy band gap .. 54
Figure 2.7 Energy level diagram of the states involved in Raman signal ... 56
Figure 2.8 Scheme of Raman Spectrometer .. 58
Figure 2.9 A typical stress versus strain curve .. 60
Figure 2.10 Cross section of Power-compensation DSC ... 62
Figure 2.11 Cross section of main components of a typical heat-flux DSC cell ... 63
Figure 2.12 A typical DSC curve for polymer .. 64
Figure 2.13 Scheme of Thermal gravimetric analysis ... 66
Figure 2.14 A typical thermal degradation TGA curve ... 67
Figure 2.15 Cross section and lab image of Scanning electron microscope .. 68
Figure 3.1 FTIR Spectra of pure PVC, pure PMMA and Their blends (a) in the range 600 – 2000 cm\(^{-1}\) (b) in the range 2500 – 3300 cm\(^{-1}\) .. 83
Figure 3.2 Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (αhv)\(^2\) vs hv, (d) (αhv)\(^{1/2}\) vs hv .. 85
Figure 3.3 Raman Spectra of Pure PVC, Pure PMMA and their blends (a) in the C-Cl stretching region of PVC (b) in the C=O stretching region of PMMA ... 90
Figure 3.4 Variation in Ultimate tensile strength, Stiffness, Young’s Modulus, stress at peak, Elongation at break, as a function of PMMA content .. 88
Figure 3.5 (a) TG of pure PVC, pure PMMA and their blends (b) Derivative TG of pure PVC, pure PMMA and their blends .. 90
Figure 3.6 Scanning Electron Micrograph of (a) Pure PVC (b) Pure PMMA (c) 80/20 (d) 60/40 (e) 40/60 93
Figure 4.1 FTIR Spectra of pure PAM, pure PVA, 70/30, 50/50 and 3070 blend ratio (a) in the region of 600-1800 cm\(^{-1}\) (b) in the region of 2500-3800 cm\(^{-1}\) .. 103
Figure 4.2 Deconvolution spectra of pure PAM, pure PVA, 70/30, 50/50 and 3070 blend ratio (a) band in the region of 1500-1800 cm\(^{-1}\) (b) band in the region of 2600-3700 cm\(^{-1}\) .. 104
Figure 4.3 Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (αhv)\(^2\) vs hv, (d) (αhv)\(^{1/2}\) vs hv .. 106
Figure 4.4 Raman Spectra of pure PAM, pure PVA, 70/30, 50/50 and 3070 blend ratio (a) in the region of 600-1800 cm\(^{-1}\) (b) in the region of 2700-3600 cm\(^{-1}\) .. 109
Figure 4.5 Variation in (a) Max load, Ultimate tensile strength, Young’s Modulus, stress at break (b) Elongation at break, Stiffness as a function of PAM/PVA content ... 111
Figure 4.6 (a) TG of pure PAM, pure PVA and blends (b) DSC of pure PAM, pure PVA and blends 112
Figure 4.7 Scanning Electron Micrograph of (a) Pure PAM (b) Pure PVA ... 114
Figure 4.8 Scanning Electron Micrograph of (a) 70/30 (b) 50/50 (c) 30/70 .. 115
Figure 5.1 FTIR Spectra of Pure and blend polymers (a) in the region of 600-3800 cm\(^{-1}\) (b) in the region of 1400-1800 cm\(^{-1}\) .. 123
Figure 5.2 Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (αhv)\(^2\) vs hv, (d) (αhv)\(^{1/2}\) vs hv, (e) ln α vs Photon Energy (hv) .. 128
Figure 5.3 Raman spectra of pure and blend films in the range (a) 600-2000 cm\(^{-1}\) (b) 2700-3500 cm\(^{-1}\) 131
Figure 5.4 Variation in Max load, Ultimate tensile strength, Young’s Modulus, stress at break, Elongation at break, Stiffness as a function of PAM/PEO content .. 133

Figure 5.5 (a) TG of pure PAM, pure PVA and blends (b) Dr TG of pure PAM, pure PEO and blends........ 135

Figure 6.1 FTIR Spectra of pure PMMA and Their composites (a) in the range 600 – 1800 cm⁻¹ (b) in the range 2800 – 3000 cm⁻¹ .. 153

Figure 6.2 Plot of (a) Absorption coefficient (α) vs Wavelength (λ), (b) Absorption coefficient (α) vs Photon Energy (hv), (c) (αhv)² vs hv, (d) (αhv)¹/₂ vs hv .. 157

Figure 6.3 Variation in Ultimate tensile strength, stress at break, Stiffness, Young’s Modulus, Elongation at break as a function of TiO₂ content .. 158

Figure 6.4 DSC curve for PMMA and its composites ... 159

Figure 6.5 (a) TG of pure PMMA and their composites (b) Derivative TG of pure PMMA and their composites 161

Figure 6.6 Scanning Electron Micrograph of (a) Pure PMMA (b) 0.03% (c) 0.1% (d) 0.5% of TiO₂............. 162