TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Contents</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction and Importance of Heterocycles</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Heterocycles Importance to Life</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3 Industrial Applications of Heterocycles</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Bis-isoquinolinones, Isoquinoline-1,3-diones</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.2 Chemistry of Isoquinolinones</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.3 Present Work: Results and Discussion</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Bis-isoquinolinones</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>2.3.1.1 HRMS, FTIR and NMR Spectra</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Isoquinoline-1,3-diones</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.4 Experimental Section <code>\</code></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Methods and Materials</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Synthesis of ZnO Nanoparticles</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Characterization of ZnO Nanoparticles</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.4.4 General Procedure for the Synthesis of Substituted Bis-isoquinolinone Derivatives 127 (a-e)</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>2.4.5 General Procedure for the Synthesis of Isoquinoline-1,3-dione Derivatives 109 (a-h) & 129 Benzannelated Isoquinolinones 110 (a-c)</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>2.5 Conclusion</td>
<td>51</td>
</tr>
</tbody>
</table>
Chapter 3 4-Substituted Isoquinoline-1,3-diones
(Michael addition, Knoevenagel condensation) 52

3.1 Introduction 52

3.1.1 Michael Addition in Green Reaction Media 53

3.2 Literature Review 55

3.2.1 Michael Addition 55

3.2.2 Knoevenagel Condensation 65

3.3 Present Work: Results and Discussion 69

3.3.1 Michael Addition 70

3.3.2 Knoevenagel Condensation 78

3.4 Experimental Section 82

3.4.1 Methods and Materials 82

3.4.1.1 General Procedure for the Synthesis of
Substituted 4-(3-oxo-1,3-diphenylpropyl)-2-phenyl
isoquinoline-1,3(2H,4H)-dione 216 (a-m) 83

3.4.2 General Procedure for the Synthesis of Substituted
4-((2-chloroquinolin-3-yl)methylene)-2-phenyl
isoquinoline-1,3(2H,4H)-dione 217 (a-n) 89

3.5 Conclusion 97

Chapter 4 Water Mediated Catalyst Free Efficient Domino Synthesis
of 3,4,6,7-tetrahydro-9-(1,2-dihydro-2-oxoquinolin-3-yl)-2H-
xanthene-1,8(5H,9H)-dione Derivatives Using Parallel
Synthesizer 98

4.1 Introduction 98

4.1.1 Importance of Xanthenediones 100

4.2 Literature Background 104

4.3 Present Work: Results and Discussion 107

4.3.1 Chemistry of Quinolinonyl Xanthene-1,8-Diones 110
4.4 Experimental Section

4.4.1 Methods and Materials

4.4.1.1 General Synthesis of 3,4,6,7-tetrahydro-9-(1,2-dihydro-2-oxoquinolin-3-yl)-2H-xanthene-1,8(5H,9H)-dione 251 (a-r)

4.5 Conclusion

Chapter 5 Antibacterial, Antifungal and Antioxidant Studies for the Synthesized Compounds

5.1 Antimicrobial Activity

5.1.1 Protocol for Antimicrobial Activity (Antibacterial and Antifungal) Agar Well Diffusion Method

5.1.2 Screening of Antibacterial Assay

5.1.2.1 Bis-isoquinolinones 127 (a-e)

5.1.2.2 Isoquinolin-1,3-diones 109 (a-h)

5.1.2.3 4-(3-oxo-1,3-diphenylpropyl)-2-phenylisoquinoline-1,3(2H,4H)-dione 216 (a-m)

5.1.2.4 4-((2-chloroquinolin-3-yl)methylene)isoquinoline-1,3(2H,4H)-dione 217 (a-m)

5.1.3 Screening of Antifungal Activity

5.2 Antioxidant Activity

5.2.1 Procedure for DPPH Method

5.2.2 Screening of Potential Antioxidants

5.3 Conclusion

OVERALL CONCLUSION OF THE THESIS

FUTURE WORK

Appendices

GENERAL REMARKS

1H NMR, 13C NMR and Mass spectra of the selected compounds

References

List of Publications