LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Diabetes</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Types of diabetes</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Type 1 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Diabetic complications</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Diabetic nephropathy</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Prevalence of diabetic nephropathy</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Symptoms of diabetic nephropathy</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Pathological stages of diabetic nephropathy</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Pathways mediating the pathogenesis of DNP</td>
<td>6</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Advanced glycation end product formation pathway</td>
<td>7</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Hexosamine pathway</td>
<td>10</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Increased polyol pathway</td>
<td>10</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Activation of protein kinase C</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Factors involved in the pathogenesis of DNP</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Hyperglycemia</td>
<td>12</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Hypertension</td>
<td>12</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Dyslipidemia</td>
<td>13</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Oxidative stress</td>
<td>16</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Dietary protein intake</td>
<td>16</td>
</tr>
<tr>
<td>1.6.6</td>
<td>Smoking</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Diagnosis of DNP</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>Cluster of differentiation 36 (CD36)</td>
<td>19</td>
</tr>
</tbody>
</table>
1.8.1 Gene encoding CD36
1.8.2 CD36 protein structure
1.8.3 Functions of CD36
1.9 Involvement of CD36 in different diseased states
1.9.1 Role of CD36 in dyslipidemia
1.9.2 CD36 mediates atherosclerosis
1.9.3 CD36 and insulin resistance
1.9.4 CD36 and inflammation
1.9.5 Impact of CD36 in cardiovascular diseases
1.10 Positive feedback mechanism of CD36
1.11 CD36 in the progression of DNP
1.12 Conventional treatments for DNP
1.12.1 Anti-hyperglycemic agents
1.12.2 Anti-glycation agents
1.12.3 Anti-hypertensive drugs
1.12.4 Inhibition of the RAAS system
1.13 Aged garlic extract
1.14 Beneficial effects of aged garlic extract
1.14.1 Anti-oxidant property
1.14.2 Hypolipidemic property
1.14.3 Hypotensive property
1.14.4 Hypoglycemic property
1.14.5 Anti-glycation property
1.15 Aim and objectives
2. Standardization of rat model for diabetic nephropathy

2.1 Background

2.2 Materials and methods

2.2.1 Chemicals and reagents

2.2.2 Maintenance of animals

2.2.3 Study 1: Optimization of STZ dosage

2.2.4 Study 2: Effect of insulin treatment on STZ injected animals

2.2.4.1 Experimental design

2.2.5 Biochemical analyses

2.2.5.1 Measurement of urinary albumin

2.2.5.2 Measurement of urinary creatinine

2.2.5.3 Measurement of urinary urea nitrogen

2.2.6 Histopathological examinations

2.2.7 Immunohistochemical analysis

2.2.8 Statistical analysis

2.3 Results

2.3.1 Effect of insulin injection on polyuria

2.3.2 Effect of insulin injection on the biomarker of DNP

2.3.3 Effect of insulin treatment on kidney damage

2.3.4 Pathological changes in diabetic rats progressing to DNP

2.3.5 Alteration of protein expressions that mediate the progression of DNP

2.4 Discussion

2.5 Conclusion
3. Expression and localization of CD36 in diabetic rats progressing to DNP

3.1 Background

3.2 Materials and methods

3.2.1 Chemicals and reagents

3.2.2 Maintenance of animals

3.2.3 Experimental design and induction of diabetes

3.2.4 Collection of urine sample

3.2.5 Collection of serum

3.2.6 Storage of kidney tissues

3.2.7 Urine and serum biochemical analyses

3.2.7.1 Measurement of urine and serum albumin

3.2.7.2 Measurement of serum and urine protein content

3.2.7.3 Measurement of urine and serum creatinine

3.2.7.4 Measurement of blood and urine urea nitrogen

3.2.8 Kidney histological analysis

3.2.9 Immunohistochemical analysis of AGE and CD36

3.2.10 CD36 mRNA expression using REAL TIME PCR

3.2.10.1 Extraction of RNA

3.2.10.2 Quantification of RNA and checking its purity

3.2.10.3 Synthesis of cDNA

3.2.10.4 Relative quantification of CD36 mRNA

3.2.11 CD36 protein expression analysis using Western blot

3.2.11.1 SDS-PAGE

3.2.11.2 Western blotting

3.2.12 Soluble CD36 level in plasma and urine – Sandwich ELISA
3.2.13 Statistical analysis

3.3. Results

3.3.1 Urinary biochemical changes

3.3.2 Serum biochemical changes

3.3.3 Kidney histological changes in diabetic rats progressing to DNP

3.3.4 Immunohistochemistry for AGE and CD36 in diabetic rats progressing to DNP

3.3.5 Expression of AGE, CD36 in whole kidney extract

3.3.6 CD36 m-RNA expression in diabetic rats progressing to DNP

3.3.7 Soluble CD36 level in plasma and urine

3.4 Discussion

3.5 Conclusion

4. Plasma and urine analysis of soluble CD36 level in diabetic patients with different stages of DNP

4.1 Background

4.2 Materials and methods

4.2.1 Study design and methods

4.2.2 Anthropometric measurements

4.2.3 Biochemical analysis

4.2.4 Sandwich ELISA for soluble CD36 in urine and plasma

4.2.5 Statistical methods

4.3 Results

4.4 Discussion

4.5 Conclusion
5. **Effect of treatments on CD36 expression in preventing the progression of DNP**

5.1 Background

5.2 Materials and methods

5.2.1 Chemicals and reagents

5.2.2 Experimental design

5.2.3 Induction of diabetes

5.2.4 Biochemical analyses

5.2.4.1 Determination of glycated hemoglobin content

5.2.4.2 Measurement of serum and urine albumin

5.2.4.3 Quantification of serum and urine creatinine

5.2.4.4 Measurement of blood and urine urea nitrogen

5.2.4.5 Quantification of serum lipid profile

5.2.5 Histopathological examination

5.2.6 Analysis of CD36 m-RNA expression

5.2.7 Immunohistochemical analysis of CD36 expression

5.2.8 Analysis of AGE and CD36 protein expression in kidney

5.2.9 Analysis of the level of CD36 in plasma and urine

5.2.10 Statistical analysis

5.3 Results

5.3.1 Effect of aged garlic extract on body weight and urine volume

5.3.2 Effect of aged garlic extract on blood glucose and glycated hemoglobin content

5.3.3 Effect of aged garlic extract on the biomarker of DNP

5.3.4 Improvement of creatinine content after supplementation of aged garlic extract
5.3.5 Improvement of urea nitrogen content after aged garlic extract supplementation 123
5.3.6 Effect of aged garlic extract on serum lipid profile 123
5.3.7 Effect of aged garlic extract on kidney histology 125
5.3.8 Effect of treatment on CD36 m-RNA expression in kidney 125
5.3.9 Effect of treatment on CD36 protein expression in kidney 125
5.3.10 Effect of treatment on the level of soluble CD36 in plasma and urine 126
5.4 Discussion 135
5.5 Conclusion 139
6 Summary 140

References

Publications and Conferences