List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>The multidisciplinary nature of iron oxide research.</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Schematic representation of the α-Fe₂O₃ structure. Blue circles show iron atoms while grey circles denote oxygen atoms.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Crystallographic unit cell of Fe₂O₄ with oxygen (grey), Fe_{oct} (blue), and Fe_{eq} ions (green).</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Iron-oxygen phase diagram.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Schematic of the synthesis setup for the formation of α-Fe₂O₃ thin film.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Schematic diagram of the furnace.</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Schematic diagram of the gas flow control.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Schematic diagram of synthesis of Fe₂O₄ and γ-Fe₂O₃ thin films from α-Fe₂O₃ thin film.</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Schematic representation of the nanostructure formation.</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>XRD pattern of α-Fe₂O₃ film formed for 2, 4, 6 and 8% dose of NH₃ respectively.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>SEM images corresponding to (a) 2%, (b) 4%, (c) 6% and (d) 8% dose of NH₃, respectively.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>(a) is the TEM image of the film formed for 2% NH₃ vapor and 32 μM concentration of PVA. (b) is a AFM amplitude image and (c) is the three dimensional AFM image of the film.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>(a) is the TEM image of the film formed for 4% NH₃ vapor and 32 μM concentration of PVA. (b) is a AFM amplitude image and (c) is the three dimensional AFM image of the film.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>(a) is the TEM image of the film formed for 6% NH₃ vapor and 32 μM concentration of PVA. (b) is a AFM amplitude image and (c) is the three dimensional AFM image of the film.</td>
<td>34</td>
</tr>
</tbody>
</table>
Figure 3.6: (a) is the TEM image of the film formed for 8% NH₃ vapor and 32 μM concentration of PVA. (b) is a AFM amplitude image and (c) is the three dimensional AFM image of the film.

Figure 3.7: SEM images corresponding to (a) 8 μM, (b) 16 μM, (c) 32 μM, (d) 64 μM and (e) 80 μM concentration of PVA respectively. (f) high magnification SEM image of the film formed for 80 μM concentration of PVA.

Figure 3.8: XRD pattern of α-Fe₂O₃ film formed for 8, 16, 32, 64 and 80 μM concentration of PVA annealed at 500 °C.

Figure 3.9: (a)-(c) TEM images of unheated and annealed films at 250 and 500 °C temperature, (d) EDX of the unheated film and (e) EDX of the film annealed at 500 °C temperature, (f) the XRD pattern of the unheated film and films annealed at temperature of 250 and 500 °C for 2 h. All the films have been formed for 32 μM PVA concentration and 6% dose of NH₃ vapor.

Figure 3.10: Represents M-T plot of (a) 100 °C (b) 300 °C and (c) 500 °C annealed α-Fe₂O₃ film and (d) is the M-H plot of annealed magnetic film formed for 6% of NH₃ vapor and 32 μM concentration of PVA.

Figure 3.11: Shows M vs H/k_BT for annealed films at temperature 100 °C, 300 °C and 500 °C with fitted Langevin function.

Figure 3.12: Structure of [Fe(H₂O)₆]³⁺ complex formed by Fe³⁺ in aqueous solution.

Figure 4.1: (a) XRD pattern of α-Fe₂O₃ film formed for 2%, 4% and 6% doses of NH₃, and were annealed at 500 °C. (b), (c) and (d) the SEM images corresponding to 2, 4 and 6% dose of NH₃, respectively.

Figure 4.2: (a) transmission (T) spectra of α-Fe₂O₃ film formed for 2, 4 and 6% doses of NH₃. (b) plot of (αhv)² vs hv of the corresponding α-Fe₂O₃ films.

Figure 4.3: Refractive index (n) vs wavelength (λ) plots of α-Fe₂O₃ films formed
for 2%, 4% and 6% doses of NH₃.

Figure 4.4: (a) XRD pattern and
(b), (c) and (d) the SEM images of α-Fe₂O₃ films formed at
8, 32 and 80 μM concentration of PVA.
(c) the TEM image for 80 μM concentration of PVA.

Figure 4.5: (a) shows transmission (T) spectra of the α-Fe₂O₃ film formed at
8, 32 and 80 μM concentration of PVA and
(b) shows (ahv)² vs hv plot of the films.

Figure 4.6: Refractive index (n) vs wavelength (λ) of α-Fe₂O₃ films formed
for 8, 32 and 80 μM concentration of PVA.

Figure 4.7: XRD patterns of the α-Fe₂O₃ films annealed at 400, 600, 800
and 1000 °C temperature.

Figure 4.8: SEM images of α-Fe₂O₃ films
(a) annealed at 600 °C,
(b) annealed at 800 °C and
(c) annealed at 1000 °C.

Figure 4.9: TEM image of annealed α-Fe₂O₃ films
(a) at 200 °C and (b) at 400 °C.

Figure 4.10: (a) the transmission of α-Fe₂O₃ films annealed at 200, 400, 600,
800 and 1000 °C temperature respectively,
(b) plot of (ahv)² vs hv of α-Fe₂O₃ films.

Figure 4.11: Shows variation of optical band gap (Eₐ) with annealing
temperature (T).

Figure 4.12: Plot for optical band gap (Eₐ) vs crystallite size (D) for experimental
and theoretical values.

Figure 4.13: (a) plot of particle size (D) vs annealing temperature and
(b) variation of refractive index (n) vs wave length (λ) of the
unheated and annealed α-Fe₂O₃ films at different temperature.

Figure 4.14: Variation of refractive index (n) and relative density (ρ/ρₒ)
with annealing temperature (T).

Figure 5.1: XRD patterns of the iron oxide thin films

Figure 5.2: Raman spectra for,
(a) α-Fe₂O₃, (b) Fe₃O₄, (c) γ-Fe₂O₃ films and
(d) is their transmission spectra.
Figure 5.3: TEM images
(a) & (b) for α-Fe₂O₃,
(c) & (d) for Fe₂O₄ and
(e) & (f) are for Fe₂O₃ films respectively.
The inset in (a), (c) and (e) is the selected area electron diffraction
(SAED) of the iron oxide thin films respectively.

Figure 5.4: (a) & (b) 2D and 3D AFM image of the α-Fe₂O₃ thin film,
(c) & (d) is the 2D and 3D AFM image of the Fe₃O₄ thin film,
(e) & (f) are the 2D and 3D AFM image of the γ-Fe₂O₃ thin film.
The entire AFM scan measurement is at 2 x 2 μm scale.

Figure 5.5: Grain size distribution as obtained from the AFM data for
(a) α-Fe₂O₃, (b) Fe₃O₄ and (c) γ-Fe₂O₃ thin films.

Figure 5.6: (a) M-H plots
(b) enlarged image of the iron oxide thin films at room temperature.

Figure 6.1: SEM images of the α-Fe₂O₃ thin films
(a) without magnetic field,
(b) formed with perpendicular magnetic field (out of plane),
(c) doped with 15 % Ni²⁺ magnetic field applied out of plane and
(d) doped with 15 % Co²⁺ magnetic field applied out of plane.
All the films are annealed at 500 °C.

Figure 6.2: Shows the XRD patterns of the pure and doped α-Fe₂O₃ thin films.

Figure 6.3: Shows the EDX of the
(a) Ni²⁺ doped and
(b) Co²⁺ doped α-Fe₂O₃ structure formed on the
surface of the thin films.

Figure 6.4: Shows the M-H curve for
(a) α-Fe₂O₃
(b) Ni²⁺ doped α-Fe₂O₃ thin film respectively.

Figure 6.5: Shows the M-H curve for Co²⁺ doped α-Fe₂O₃ thin film.

Figure 6.6: Shows the SEM images of the Co²⁺ doped α-Fe₂O₃ thin films
(a) unheated and
(b) annealed at 500 °C formed with the external magnetic field
applied parallel (in plane) to the liquid vapour interface.

Figure 6.7: Shows the SEM images of the Co²⁺ doped α-Fe₂O₃ thin films
(a) unheated and annealed at
(b) 100 °C, (c) 300 °C and
(d) 500 °C temperature.

Figure 6.8: Schematic of the nanostructure formation on the iron oxide thin film in presence of the external magnetic field.
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>General properties of the iron oxides.</td>
<td>10</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Value of NH3 doses, thickness, crystallites size ($D{hkl}$), and rms roughness as obtained from XRD and AFM data.</td>
<td>36</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Value of PVA concentration, thickness and crystallite size (D_{hkl}) of iron oxide thin films from XRD result.</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Values of dose of NH$_3$, PVA concentration, average thickness (t), crystallite size (D), lattice constant (c/a), optical band gap energy (E_g), refractive index (n), and relative density (ρ/ρ_k) for α-Fe$_2$O$_3$ films.</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Value of PVA concentration, dose of NH$_3$, average thickness (t), grain size (D), lattice constant (c/a), optical band gap energy (E_g), refractive index (n) and relative density (ρ/ρ_k) for α-Fe$_2$O$_3$ films.</td>
<td>53</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Value of β, grain size (D_{hkl}), lattice spacing (a_{hkl}), lattice parameter ($a=b=c$), strain (ε_{str}) and dislocation density (δ) for iron oxide thin films from XRD result.</td>
<td>60</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Value of saturation magnetization (M_s), coercivity (H_c) and remanent magnetization (M_r) for iron oxide thin films from VSM result.</td>
<td>77</td>
</tr>
</tbody>
</table>