Table of Contents

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1-5</td>
</tr>
<tr>
<td>2. Review of Literature</td>
<td>6-39</td>
</tr>
<tr>
<td>2.1 Chromium Pollution</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Chromium – Occurrence, Chemistry And Applications</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 Chromium Occurrence</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Chromium Chemistry</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Applications of Chromium</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Toxicity and Health Effects</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Physico-Chemical Treatment Methods for Chromium (VI) Removal</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Chemical Reduction by using Ferrous Compounds</td>
<td>15</td>
</tr>
<tr>
<td>2.4.2 Chemical Reduction by using Sulfur Compounds</td>
<td>15</td>
</tr>
<tr>
<td>2.4.3 Ion Exchange</td>
<td>16</td>
</tr>
<tr>
<td>2.4.4 Electrochemical Methods</td>
<td>16</td>
</tr>
<tr>
<td>2.4.5 Membrane Filtration Techniques</td>
<td>17</td>
</tr>
<tr>
<td>2.4.6 Adsorption Techniques</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Bioremediation of Chromium(VI) using Microorganisms</td>
<td>18</td>
</tr>
<tr>
<td>2.5.1 Reduction of Cr(VI) to Cr(III) by Bacteria</td>
<td>19</td>
</tr>
<tr>
<td>2.5.2 Biosorption of Cr(VI) by using Bacteria</td>
<td>21</td>
</tr>
<tr>
<td>2.5.2.1 Effect of pH on Biosorption</td>
<td>22</td>
</tr>
<tr>
<td>2.5.2.2 Effect of Contact Time</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2.3 Effect of Adsorbent Dosage</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2.4 Effect of Initial Metal Concentration</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3 Adsorption Isotherms</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3.1 Langmuir Isotherm</td>
<td>25</td>
</tr>
<tr>
<td>2.5.3.2 Freundlich Isotherm</td>
<td>27</td>
</tr>
<tr>
<td>2.5.3.3 Dubinin-Radushkevich (D-R) Sorption Isotherm</td>
<td>27</td>
</tr>
</tbody>
</table>
2.5.3.4 Temkin Isotherm 28
2.5.4 Kinetic Modeling of Batch Biosorption 29
2.6 Removal of Cr(VI) by Immobilized Cells 31
2.7 Removal of Cr(VI) by using Biofilms 33
2.8 Packed Bed Column Studies 36
 2.8.1 Breakthrough Curve Modeling 36
3. Materials and Methods 40-53
 3.1 Glassware 40
 3.2 Chemicals 40
 3.3 Equipment 40
 3.4 Culture Media 40
 3.4.1 Nutrient Broth 40
 3.4.2 Nutrient Agar 41
 3.4.3 M9 Minimal Media 41
 3.4.4 Glycerol Stock Cultures 42
 3.5 Cr(VI) Stock Solutions 42
 3.6 Cr(VI) Analysis By Di-Phenyl Carbazide Method 42
 3.7 Total Chromium Analysis 43
 3.8 Inoculum Preparation 43
 3.9 Biomass Estimation 43
 3.10 Selection of Microorganism 44
 3.10.1 Specific Growth Rate 44
 3.10.2 Reduction Rate 44
 3.10.3 Sensitivity 44
 3.11 Parameter Optimization 44
 3.11.1 Effect of pH 45
 3.11.2 Effect of Temperature 45
 3.11.3 Effect of Agitation Speed 45
 3.11.4 Effect of Inoculum Concentration 45
 3.11.5 Effect of Carbon Sources 46
 3.11.6 Effect of Nitrogen Sources 46
3.12 Media Optimisation by Statistical Analysis 46
 3.12.1 Plackett Burman Design 46
 3.12.2 Response Surface Methodology 47
3.13 Growth Kinetics at Various Cr(VI) Concentrations 50
3.14 Selection of Ideal Support for Growth of Biofilm 50
 3.14.1 Preparation of Supports 50
 3.14.2 Growth of Biofilm 50
3.15 Cr(VI) Removal Studies by using Coconut Fiber 51
 3.15.1 Batch Studies 51
 3.15.2 Packed Column Studies 51
3.16 Removal Studies by using Coconut Fiber as a Support for Biofilm 52
 3.16.1 Growth of Biofilm 52
 3.16.2 Analysis of Biofilm 52
 3.16.3 Batch Studies and Column Studies 53
3.17 Statistical Analysis 53
4. Results 54 -97
 4.1 Studies on Growth and Bioremoval of Cr(VI) by Bacterial Isolates 54
 4.2 Selection of Bacterial Isolate 55
 4.3 Optimization of Parameters for growth and Cr(VI) reduction 55
 4.3.1 Effect of pH 55
 4.3.2 Effect of Temperature 57
 4.3.3 Effect of Agitator Speed 57
 4.3.4 Effect of Inoculum size 57
 4.3.5 Effect of Carbon Sources 59
 4.3.6 Effect of Nitrogen Sources 59
 4.4 Statistical Optimization of Media Components 60
 4.4.1 Plackett-Burman Design 60
 4.4.2 Response Surface Methodology 62
 4.5 Growth Kinetics on Molasses at different Cr(VI) Concentrations 67
 4.6 Selection of Support for Biofilm Development 72
 4.7 Batch Adsorption Study 73
4.7.1 Optimization of Parameters

4.7.1.1 Effect of pH

4.7.1.2 Effect of Adsorbent Dosage

4.7.1.3 Effect of Contact Time

4.7.2 Adsorption Isotherms

4.7.2.1 Langmuir Isotherm

4.7.2.2 Freundlich Isotherm

4.7.2.3 Dubinin-Radushkevich (D-R) Sorption Isotherm

4.7.2.4 Temkin Isotherm

4.7.3 Adsorption Kinetics

4.7.3.1 Pseudo-first order model

4.7.3.2 Pseudo-second order model

4.8. Packed Bed Column Studies

4.8.1 Effect of Bed Height

4.8.2 Effect of Flow Rate

4.8.3 Effect of Cr(VI) Concentration

4.8.4 Column Studies using Spiked Real Water Samples

4.9 Column Data Modeling

4.9.1 Adams-Bohart Model

4.9.2 Thomas Model

4.9.3 Yoon-Nelson Model

5. Discussion

5.1 Selection of Bacteria for removal of Cr(VI)

5.2. Optimization of Parameters for Growth and Cr(VI) Removal

5.2.1 Effect of pH and Temperature

5.2.2 Effect of Carbon Sources

5.2.3 Effect of Nitrogen Sources

5.2.4 Plackett-Burman Design

5.2.5 Response Surface Methodology

5.2.6 Response Surface Plots

5.2.7 Optimization
5.3. Kinetics Of Biomass Growth and Cr(VI) Reduction under different Molasses and Cr(VI) Concentrations. 104

5.4. Selection of Supports for Immobilization of Acinetobacter Junii and removal of Cr(VI) 105

5.5. Batch Adsorption Study 106

5.5.1 Effect of Various Parameters on Batch Adsorption 106

5.5.1.1 Effect of pH 106

5.5.1.2 Effect of Contact Time 106

5.5.1.3 Effect of Adsorbent Dosage 107

5.5.2 Adsorption Isotherm Modeling 107

5.5.3 Biosorption Kinetics 108

5.6 Packed Bed reactor sorption studies 108

5.6.1 Effect of Flow Rate 108

5.6.2 Effect of Bed Height 109

5.6.3 Effect of Inlet Cr(VI) Concentration 109

5.6.4 Packed bed column studies for Cr(VI) spiked Environmental samples 109

5.6.5 Breakthrough Curve Modeling 110

5.6.5.1 Thomas Model 110

5.6.5.2 Yoon - Nelson model 110

5.6.5.3 Adams-Bohart model 112

6. Summary and Conclusions 113

References

Publications