Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>i</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Redox enzymology and its importance:</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Heme-enzymes and their functions - a prologue:</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Classification of Heme-enzymes:</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Heme-enzymes and redox proteins in cellular biochemistry:</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Heme peroxidase family:</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>9</td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Heme-enzymes and their structure-function aspects:</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 General mechanistic aspects of heme-enzyme function:</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Heme histidylate peroxidases as exemplified by horseradish peroxidase (HRP):</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Heme thiolate peroxidases as exemplified by chloroperoxidase (CPO):</td>
<td>13</td>
</tr>
<tr>
<td>2.1.4 Heme tyrosylate enzymes as exemplified by catalase (CAT):</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Diverse reactions catalysed by heme-enzymes:</td>
<td>18</td>
</tr>
<tr>
<td>2.2.1 Peroxidation reactions:</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2 Chlorination reactions and other two-electron transfers:</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Substrate binding and catalysis in heme-enzymes:</td>
<td>21</td>
</tr>
<tr>
<td>2.3.1 Reaction mechanisms and chemistry-salient features of the different viewpoints/schools of thought:</td>
<td>22</td>
</tr>
<tr>
<td>2.3.2 Reaction promiscuity and kinetic paradigms conventionally used in explaining reaction chemistry:</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3 Heme systems and reaction diversity/versatility:</td>
<td>25</td>
</tr>
<tr>
<td>2.3.4 Methodologies conventionally employed in studying heme-enzymes and reactions catalysed by them:</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Heme-enzyme ligands and their characteristics:</td>
<td>29</td>
</tr>
</tbody>
</table>
2.5 Modulations of heme-enzyme reactions: .. 36
 2.5.1 Cues from nature on heme-enzyme reaction modulations: 36
 2.5.2 Role of radical mediators: ... 37
2.6 CYP-CPR interactions in CYP450 reactions: .. 37
2.7 Hormesis and free radicals - relevance in toxicology and cellular biology: 40
 2.7.1 Hormesis and its importance in toxicology: ... 40
 2.7.2 Free radicals and oxidative damage: .. 41
2.8 Problems in the field: .. 42

Chapter 3 ... 44

AIM AND OBJECTIVES .. 44
AIM: ... 44
SPECIFIC OBJECTIVES: .. 44

Chapter 4 ... 45

MATERIALS AND METHODS .. 45
4.1 IN VITRO REGIME: .. 45
 4.1.1 Peroxidation reaction kinetics of different enzyme-substrate combinations at
 varied environments: ... 45
 4.1.2 Effect of mild radical quenchers on peroxidation reaction enhancements proffered
 by azide: .. 48
 4.1.3 UV-Vis spectral determination of type-II additive ligand binding to heme-
 enzymes: ... 48
 4.1.4 Determination of direct attack of redox additives azide, amitrol and
 phenylhydrazine on native substrates and their one-electron oxidation products: 48
 4.1.5 Assessment of storage-dependent changes to acidity of phenylhydrazine
 solutions: ... 49
 4.1.6 Effects of fresh and stored phenylhydrazine on peroxidation reactions: 49
 4.1.7 UV-Vis spectral studies of fresh and stored phenylhydrazine samples: 49
 4.1.8 1H-NMR studies of fresh and stored phenylhydrazine samples: 49
 4.1.9 HPLC determination of changes to stored phenylhydrazine samples: 50
 4.1.10 Effect of other substrates when used as redox additives in peroxidations
 reactions: ... 50
 4.1.11 Effect of small molecule redox additives on chlorination reactions catalysed by
 CPO: .. 50
 4.1.12 Docking studies of substrate and ligand interactions with heme-enzymes: 51
4.2 IN SITU REGIME: ... 52
 4.2.1 Prediction of transmembrane segments (TMS) segments of mammalian CYP and CPR: .. 52
 4.2.2 Probing the functional role of N-terminal transmembrane helix (TMH) interactions of mammalian CYP and CPR: 52

4.3 PHYSIOLOGICAL REGIME: .. 52
 4.3.1 Effect of redox additives on the growth profile of native and heme/redox enzyme-expressing bacterial strains: .. 52
 4.3.2 Assay of protein content: .. 53

Chapter 5 ... 55

RESULTS .. 55

5.1 IN VITRO REGIME: ... 55
 5.1.1 Peroxidation kinetics of different enzyme substrate combination reactions at varied environments: ... 55
 5.1.2 Effect of mild radical quenchers on peroxidation reaction enhancements proffered by azide: ... 66
 5.1.3 UV-Vis spectral determination of type-II additive ligand binding to heme-enzymes: .. 67
 5.1.4 Determination of direct attack of redox additives azide, amitrol and phenylhydrazine on native substrates and their one-electron oxidation products: 71
 5.1.5 Effect of stored azide on peroxidation reactions: 74
 5.1.6 Effect of stored phenylhydrazine: .. 75
 5.1.7 UV-Vis spectral studies of fresh and stored phenylhydrazine samples: 80
 5.1.8 1H-NMR studies of fresh and stored phenylhydrazine samples: 81
 5.1.9 Determination of changes to stored phenylhydrazine samples: 83
 5.1.10 Effect of other substrates when used as redox additives in peroxidations reactions: ... 86
 5.1.11 Effect of small molecule redox additives on chlorination reactions catalysed by CPO: ... 87
 5.1.12 Docking studies of substrate and ligand interactions with heme-enzymes: 91

5.2 IN SITU REGIME: ... 96
 5.2.1 Prediction of transmembrane segments (TMS) segments of mammalian CYP and CPR: ... 96
 5.2.2 Probing the functional role of N-terminal transmembrane helix (TMH) interactions of mammalian CYP and CPR: 98
5.3 PHYSIOLOGICAL REGIME: ... 101
 5.3.1 Effect of azide: ... 101
 5.3.2 Effect of amitrol: .. 106

Chapter 6 .. 108

DISCUSSION .. 108

6.1 Peroxidation reaction kinetics - Conceived enzymatic and non-enzymatic
 reactions: .. 108
 6.1.1 Phenomenology of modulations of heme-enzyme reactions by type II binders: 114
 6.1.2 Plausible mechanism for additive mediated effects: 130
 6.1.3 Chlorination reactions: ... 136
 6.1.4 Ramifications of the work: .. 136

6.2 In situ regime: .. 138
 6.2.1 On the functional role of the N-term TMS of CPR in CYP450 reactions: 138

6.3 Physiological regime .. 143

Chapter 7 .. 146

SUMMARY & CONCLUSIONS ... 146

APPENDIX ... 147

 UV-Vis spectral studies with CAT and type-II binders:............................... 147

PUBLICATIONS .. 148

REFERENCES ... 149