Chapter 1

1.1 Antibodies
 1.1.1 Definition and Types 2
 1.1.2 Structure 2

1.2 Polyclonal Antibody 5
 1.2.1 Facts 5
 1.2.2 Antibody Production 6
 1.2.3 Advantages 6
 1.2.4 Disadvantages 7

1.3 Monoclonal Antibody 7
 1.3.1 Production of Monoclonal Antibody 8
 1.3.1.1 Immunization of Mice 8
 1.3.1.2 Screening of Mice for Antibody production 10
 1.3.1.3 Preparation of Myeloma Cells 10
 1.3.1.4 Fusion of Myeloma Cells with Immune Spleen Cell 11
 1.3.1.5 Cloning of Hybridoma cells by Limiting Dilution 11
1.3.2 Advantages 12
1.3.3 Disadvantages 13
1.4 Therapeutic Antibodies Approved by FDA 13
1.5 Production Systems for Monoclonal Antibody 15
 1.5.1 IN VITRO Production Systems 16
 1.5.2 Small Scale Monoclonal Antibody Production 16
 1.5.2.1 Adherent Culture 16
 1.5.2.2 Suspension Culture 17
 1.5.3 Large Scale Antibody Production 18
 1.5.3.1 Suspension Culture 18
 1.5.4 Bioreactors for Antibody Production 19
 1.5.4.1 Stirred Tank Bioreactors 19
 1.5.4.2 Airlift Bioreactors 19
 1.5.4.3 Disposable Bioreactors 19
 1.5.4.4 Fixed or Packed Bed Bioreactors 20
1.6 Purification of Antibodies 21
 1.6.1 Histidine Ligand Pseudo-Affinity Chromatography 22
1.7 Objectives of the Study 24
Chapter 2

Characterization of anti-β Lactoglobulin Monoclonal Antibody and its Production using T-Flask

2.1 Introduction

2.1.1 Hybridoma Technology – Monoclonal Antibody Production

2.2 Materials and Methods

2.2.1 Materials

2.2.2 Source of the Clone

2.2.3 Freezing of Hybridoma Cells

2.2.4 Thawing of Hybridoma Cells

2.2.5 Antibody Characterization

 2.2.5.1 Antibody Isotyping

 2.2.5.2 Antigen Titration

 2.2.5.3 ELISA

 2.2.5.4 Determination of Antibody Titer

 2.2.5.5 SDS-PAGE and Western Blotting

2.2.6 Determination of Antibody Concentration

 (Standard Curve)

2.2.7 Cell Growth and Antibody Production (T-Flask)

 2.2.7.1 Production of Monoclonal Antibody

 2.2.7.2 Estimation of Glucose Concentration

 2.2.7.3 Determination of Lactate Production

 2.2.7.4 Determination of Monoclonal Antibody Concentration

2.3 Results and Discussion

 2.3.1 Characterization of anti-β Lactoglobulin Monoclonal Antibody

 2.3.2 Cell Growth Pattern & Production of anti-β Lactoglobulin Monoclonal Antibody
Chapter 3

Purification of anti-β Lactoglobulin Monoclonal Antibody by Pseudoaffinity Chromatography using a Convective Interaction Media (CIM-Histidine) Monolithic Column

3.1 Introduction

3.1.1 Evolution of Monoliths

3.1.1.1 Hydrophilic polysaccharide-based stationary phase

3.1.1.2 Development of rigid hydrophilic stationary phase

3.1.1.3 Introduction of non porous stationary phase

3.1.1.4 Stationary phase with perfusion particles for convective mass transfer

3.1.2 Monolithic stationary phase

3.1.2.1 Types and properties of chromatographic monoliths

3.1.2.2 Advantages of monoliths

3.1.3 CIM (Convective Interaction Media) Technology

3.1.3.1 Revolutionary chromatographic and Bioconversion supports

3.1.3.2 Definition of chromatographic monoliths

3.1.4 CIM (Convective Interaction Media) Disks

3.2 Materials and Methods

3.2.1 Materials

3.3 Purification of anti-β Lactoglobulin Monoclonal Antibody using CIM-Histidine Column

3.3.1 Pretreatment of Cell Culture Supernatant

3.3.1.1 Ammonium Sulphate Precipitation

3.3.1.2 Dialysis
3.3.2 Chromatographic Procedure 56
3.3.3 Protein Determination 57
3.3.4 Sodium-Dodecyl -Sulfate Polyacrylamide Gel Electrophorosis 57
3.3.5 Immunoblotting 58
3.4 Results and Discussion 59
Production of Monoclonal Antibody using Cryogel-Based Mini Bioreactor System

4.1 Introduction

4.1.1 Cryogel Bioreactors 66

4.1.2 Macroporous Cryogels: Preparations & Properties 68

4.1.3 Cryogels for Cell Immobilization 69

4.2 Materials and Methods 72

4.2.1 Materials 72

4.3 Production of Continuous Supermacroporous Columns 73

4.4 Preparation of Gelatin-Cryogel Cell Culture Matrix 74

4.5 Size of the Gel 74

4.6 Production of mAb using using Cylindrical Cryogel Column of 1.27ml Bed Volume 76

4.6.1 Sterilization of Gels 76

4.6.2 Culturing of cells on Gelatin-Cryogel Matrix 76

4.6.3 Estimation of Glucose Concentration 77

4.6.4 Determination of Lactate Production 77

4.6.5 Determination of mAb Concentration 77

4.7 Scanning Electron Microscopy Analysis 78

4.8 Production of mAb using 35.32ml bed volume Cryogel 78

4.8.1 Sterilization of gels 78

4.8.2 Mini Bioreactor set up 79

4.8.3 Culturing of Cells on Gelatin-Cryogel Matrix 79

4.8.4 Estimation of Glucose Concentration 80

4.8.5 Determination of Lactate Production 80

4.8.6 Determination of mAb Concentration 80
4.9 Results and Discussion

4.9.1 Production of mAb using Smaller Cryogel Column of 1.27ml bed volume 82

4.9.2 Cell Density and Morphology in the Cryogel Matrix 86

4.9.3 mAb Productivity in Cryogel and Culture Flask 86

4.9.4 Production of mAb using 35.32ml bed volume Cryogel 94

Chapter 5 104-108

General Conclusions and Future Perspectives

References

Publications