Chapter 1

Introduction

1.1 Poly (ethylene – co – vinyl acetate) 2
 1.1.1 Applications of EVA 3
 1.1.2 EVA in food packaging 4

1.2 Composites 5
 1.2.1 Classification of composites 5
 1.2.1.1 Metal matrix composites 6
 1.2.1.2 Ceramic matrix composites 6
 1.2.1.3 Polymer matrix composites 6
 1.2.2 Components of composites 7
 1.2.2.1 Matrix 7
 1.2.2.2 Filler 7
 1.2.2.2.1 Natural fibers 8
 1.2.2.2.2 Advantages of natural fiber reinforcement 8
 1.2.2.3 Draw backs of natural fiber as reinforcement 9
 1.2.2.4 Structure of natural fibers 9
 1.2.2.5 Past works on natural fiber/polymer composites 10
 1.2.2.6 Interface 11
 1.3 Fabrication of the composites 12
 1.3.1 Extrusion 12
1.3.2 Injection molding 13
1.3.3 Blow molding 14
1.3.4 Hand lay-up technique 15

1.4 Food packaging 16
1.4.1 Commonly used food packaging materials 16
1.4.2 Polymers in food packaging 17
1.4.3 Suitability of plastics for food packaging 18
1.4.4 Basic properties expected for food packaging 18

1.5 Characterization of polymer composites 19
1.5.1 Morphology 19
1.5.2 Mechanical properties 19
 1.5.2.1 Tensile strength
 1.5.2.2 Tear strength
 1.5.2.3 Dynamic mechanical analysis
1.5.3 Solvent transport studies 20
1.5.4 Thermal studies 22

1.6 Biodegradation studies 22
1.7 Literature review and existing gap 23
 1.7.1 Objectives of the work 24

Chapter 2

Material and experimental techniques

2.1 Materials 27
2.1.1 EVA

2.1.2 H. sabdariffa fibers

2.2 Experimental techniques

2.2.1 Isolation of cellulosics microfibers from H. sabdariffa fibers

2.2.1.1 Steam explosion in alkaline environment

2.2.1.2 Bleaching process

2.2.1.3 Steam explosion in acid environment

2.2.1.4 Mechanical treatment of fibers

2.3 Preparation of CMF/EVA composites

2.4 Characterisation and evaluation

2.4.1 Evaluation of chemical composition of CMF

2.4.2 Determination of moisture content of CMF

2.4.3 Morphological studies

2.4.3.1 Scanning electron microscope (SEM)

2.4.3.2 Optical microscopy

2.4.3.3 X-Ray diffraction (XRD)

2.4.3.4 Fourier transform infra red spectroscopic studies (FTIR)

2.4.4 Evaluation of mechanical properties

2.4.4.1 Tensile strength
2.4.4.2 Elongation at break 33

2.4.4.3 Tear strength 33

2.4.4.4 Dynamic mechanical analysis 33

2.4.4.5 Ageing studies – gamma radiation 33

2.4.4.6 Ageing studies – thermal ageing 34

2.4.5 Evaluation of thermal properties 34

2.4.5.1 Thermogravimetric analysis (TGA) 34

2.4.5.2 Differential scanning calorimetry (DSC) 34

2.4.6 Swelling and oxygen transport rate 35

2.4.6.1 Oxygen transport rate 35

2.4.6.2 Swelling and diffusion parameter 35

2.4.7 Evaluation of microbial growth 36

2.4.8 Biodegradability test 36

2.4.8.1 Natural soil burial test 36

2.4.8.2 Compost soil burial test with earthworms 37

2.4.8.3 Biodegradation test with cultured fungi 38

Chapter 3

Isolation and characterization of CMF from H. sabdariffa

3.1 Introduction 40

3.2 Results and Discussion

3.2.1 Chemical composition of fibers 44
Chapter 3

3.2 FTIR studies
- FTIR studies
- XRD studies
- Morphology analysis
- Thermal characterization of treated fiber

Chapter 4

Development of CMF/EVA composites: Mechanical and ageing studies

4.1 Introduction
- Introduction

4.2 Results and Discussion
- Mechanical properties of CMF/EVA composites
- Dynamic mechanical analysis
- Effect of gamma radiation on mechanical properties of CMF/EVA composites

4.4 Evaluation of thermal ageing
- Evaluation of thermal ageing

Chapter 5

Thermal characteristic of CMF/EVA composites

5.1 Introduction
- Introduction

5.2 Results and Discussion
- TGA of CMF/EVA composites
- Oxidation index (OI) and integral procedural decomposition temperature (IPDT)
- Kinetic parameter for thermal degradation
5.2.4 Differential scanning calorimetry analysis

Chapter 6

Barrier properties of CMF/EVA composites: Studies on feasibility for food packaging

6.1 Introduction

6.2 Results and Discussion

6.2.1 Oxygen transport rate

6.3 Swelling parameter

6.3.1 Swelling index and swelling coefficient

6.3.2 Elastomer – fiber interactions

6.3.3 Diffusion, sorption and permeation coefficient

6.4 Effect of CMF on microbial growth

Chapter 7

Biodegradability of EVA composites: Effect of CMF loading

7.1 Introduction

7.2 Results and Discussion

7.2.1 Biodegradation behavior of CMF/EVA composites – natural burial test

7.2.1.1 Retention in tensile strength

7.2.1.2 Percentage weight loss of CMF/EVA composites on biodegradation

7.2.1.3 Morphology and optical photograph of
biodegraded CMF/EVA composites

7.2.1.4 FTIR spectrum of CMF/EVA composites before and after biodegradation

7.2.2 Biodegradation studies in compost soil burial

7.2.3 Biodegradation test with cultured fungi

Chapter 8

Conclusions

8.1 Future work