CONTENTS

Abstract i
Acknowledgement iv
Abbreviation and Symbols vi
Content ix
List of Schemes xiii
List of Figures xv
List of Tables xvii

CHAPTER 1: (E)-2-Benzylidene-7-chloro-9-phenyl-3,4-dihydroacridin-1(2H)-ones: Synthesis and antioxidant activity

1.1 Introduction 1
 1.1.1 Heterocyclic Chemistry 1
 1.1.2 Acridine Chemistry 2
 1.1.3 Chalcone Chemistry 3
1.2 Reported synthetic approach 4
1.3 Present Work: Results and Discussion 9
1.4 Conclusion 13
1.5 Experimental Section 13
 1.5.1 Synthesis of 7-Chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 1.33 13
 1.5.2 Synthesis of (E)-2-benzylidene-7-chloro-9-phenyl-3,4-dihydroacridin-1(2H)-one, 1.44a-f 13
1.6 DPPH freed radical scavenging assay 17

CHAPTER 2: Synthesis and larvicidal evaluation of acridine-3-carboxylate and pyrazolo[3,4-a]acridine isomers

2.1 Introduction 18
 2.1.1 Mosquito larvicidal activity of heterocycles 18
2.2 Reported Synthetic Approach 21
2.3 Present Work: Results and Discussion 27
2.4 Conclusion 34
2.5 Experimental Section 35
2.5.1 Synthesis of ethyl 10-chloro-4-(3,4-dimethoxyphenyl)-2-hydroxy-12-phenyl-1,4,5,6-tetrahydrobenzo[\(a\)]acridine-3-carboxylates, \(2.39a-e\)

2.5.2 Synthesis of 1-(9-chloro-3,3a,4,5-tetrahydro-3-(3,4-dimethoxyphenyl)-11-phenylpyrazolo[3,4-\(a\)]acridine-2-yl)ethanone isomers, \(2.41a-e\) and \(2.42a-e\)

2.6 Biological Assay

CHAPTER 3: Synthesis, molecular docking, antioxidant and antidiabetic studies of Pyrimidine, dihydrophenanthroline heterocycles

3.1 Introduction

3.1.1 Pyrimidine and Phenanthroline Heterocycles

3.2 Reported Synthetic Approaches

3.3 Present Work: Results and Discussion

3.3.1 Single Crystal X-ray Diffraction Analysis

3.3.2 Infrared Spectroscopy

3.3.3 Glucose Diffusion Inhibitory Test

3.3.4 \(\alpha\)-Glucosidase Inhibition Assay

3.3.5 \(\alpha\)-Amylase Inhibition Assay

3.3.6 Molecular Docking Study on \(\alpha\)-Amylase

3.3.7 Molecular Docking Study on \(\alpha\)-Glucosidase

3.3.8 In Vitro Antioxidant Activity

3.4 Conclusion

3.5 Experimental Section

3.5.1 Synthesis of 10-chloro-4,12-diphenyl-5,6-dihydropyrimido[4,5-\(a\)]acridin-2-amines, \(3.34a-f\)

3.5.2 Synthesis of 2-amino-10-chloro-1,4,5,6-tetrahydro-4-(3,4-dimethoxy phenyl)-12-phenylbenzo[\(j\)][1,7]phenanthroline-3-carbonitriles, \(3.37a-f\)

3.6 Biological Assay

3.6.1 Glucose Diffusion Inhibitory Test

3.6.1.1 Sample preparation

3.6.1.2 Inhibition assay for \(\alpha\)-amylase activity (DNSA method)
3.6.1.3 Inhibition assay for α-glucosidase activity 76
3.6.1.4 Statistical analysis 76
3.6.2 Molecular Docking Studies 76
3.6.3 In Vitro Anti-Oxidant Assay 77
 3.6.3.1 DPPH free radical scavenging assay 77
 3.6.3.2 Hydrogen Peroxide scavenging activity assay 78
 3.6.3.3 Hydroxyl Radical Scavenging Activity 78

CHAPTER 4: Cytotoxicity and HDAC enzyme activity of novel 2-amino-10-chloro-4,12-diphenyl-5,6-dihydro-4H-pyrano[2,3-a]acridine-3-carbonitrile derivatives

4.1 Introduction 79
 4.1.1 Anti-cancer Activity of Pyrane Heterocycles 79
4.2 Reported Synthetic Approach 82
4.3 Present Work: Results and Discussion 88
 4.3.1 Cytotoxicity 90
4.4 Conclusion 93
4.5 Experimental Section 93
 4.5.1 Synthesis of 2-amino-10-chloro-4,12-diphenyl-5,6-dihydro-4H-pyrano[2,3-a]-3-carbonitriles, 4.43a-f 93
 4.5.2 Synthesis of pyran derivatives, 4.44a-e 93
4.6 Biological Assay 100
 4.6.1 Cytotoxicity Assay 100
 4.6.2 Morphological Alteration 100
 4.6.3 Histone Deacetylase Assay 100
 4.6.4. Statistical Analysis 101

CHAPTER 5: Synthesis of 5,6-dihydrobenzo[1,7]phenanthroline and Quinazolinone heterocyclics via reusable catalyst MCR reaction

5.1 Introduction 102
 5.1.1 Multi Component Reaction 102
 5.1.1.1 Importance of Muticomponent Reaction 102
5.2 Reported Synthetic Approach 106
5.3 Present Work: Results and Discussion 111
5.4 Conclusion 124
5.5 Experimental Section

5.5.1 Synthesis of 5,6-dihydrobenzo[1,7]phenanthroline-3-carbonitrile, 5.39b and 5,6-dihydrobenzo[1,7]phenanthroline 5.36b via MCRs.

5.5.2 Synthesis of regioselective 5,6-dihydrobenzo[1,7]phenanthrolines, 5.36a-h

5.5.3 An alternative route for the synthesis of 5,6-dihydrobenzo[1,7]phenanthroline, 5.36b

5.5.4 Synthesis of 5,6-dihydrobenzo[1,7]phenanthroline-3-carbonitriles, 5.39a,b

5.5.5 One pot synthesis of 5,6-dihydrobenzo[1,7]phenanthroline-3-carbonitriles, 5.39a-d using montmorillonite KSF catalyst.

5.5.6 General procedure for synthesis of 2,3-disubstituted 2,3-dihydroquinazolin-4(1H)-ones, 5.42a-g

Summary and Conclusions 134
Appendix 135
General Remarks 135
References