Chapter 1 Introduction

1.1 Current energy scenario
1.2 Hydrogen: The fuel of the future
1.3 Hydrogen generation
 1.3.1 From fossil resources
 1.3.2 From renewable resources
1.4 Hydrogen storage
 1.4.1 Metal hydrides
 1.4.2 Hydrogen storage through physisorption
1.5 Hydrogen as a fuel
1.6 Computational methods
 1.6.1 The Schrödinger equation
 1.6.2 Born-Oppenheimer approximation
 1.6.3 The variational principle
 1.6.4 The Hartree-Fock method
 1.6.5 Density Functional Theory (DFT)
 1.6.6 The Bloch electrons and plane wave basis set
1.7 Scope of the present thesis

Chapter 2 Designing g-CN Based Photocatalyst for Hydrogen Generation Through Solar Water Splitting

2.1 Introduction
2.2 Computational details
Chapter 3 Hydrogen Adsorption Properties of Alkali Metal Decorated Cyclic Hydrocarbons \((C_nH_n-M)\)

3.1 Introduction
3.2 Computational details
3.3 Results and discussion
 3.3.1 Role of charged surface and the electronic induction effect
 3.3.2 Role of aromaticity
3.4 Conclusions

Chapter 4 Hydrogen Adsorption Properties of Alkali Metal Decorated Boron Hydrides \((B_nH_n-M)\)

4.1 Introduction
4.2 Computational details
4.3 Results and discussion
 4.3.1 Hydrogen adsorption properties of lithium decorated diborene \((B_2H_4Li_2)\) and diboryne \((B_2H_2Li_2)\)
 4.3.2 Hydrogen adsorption in Li-doped \(closo\)-boranes
4.4 Conclusions

Chapter 5 Electronic Structure and Properties of Boron Hydrides Analogues of Aluminum Hydrides

5.1 Introduction
5.2 Computational details
5.3 Results and discussion
 5.3.1 The \(closo\)-alanes \((Al_nH_{n+2})\)
5.3.2 The nido-alanes (Al\textsubscript{n}H\textsubscript{n+4}) 114
5.3.3 The arachno-alanes (Al\textsubscript{n}H\textsubscript{n+6}) 118
5.3.4 The tetra-alanes (Al\textsubscript{4}H\textsubscript{m}) (m=6, 8 and 10) 121
5.4 Conclusions 124

Chapter 6 Hydrogen Adsorption in Light Metal Decorated Fullerenes Clusters 125
6.1 Introduction 126
6.2 Computational details 128
6.3 Results and discussion 129
 6.3.1 Nanoscale curvature-induced hydrogen adsorption in alkali metal doped carbon nanomaterials 129
 6.3.2 Transition metal decorated porphyrin like porous fullerene: Promising materials for molecular hydrogen adsorption 139
6.4 Conclusions 146

Chapter 7 Alkali Metal Decorated Two-dimensional Materials as Promising Hydrogen Storage Materials 147
7.1 Introduction 148
7.2 Computational details 149
7.3 Results and discussion 150
 7.3.1 Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications 150
 7.3.2 Hydrogen adsorption in lithium decorated conjugated microporous polymers 158
7.4 Conclusions 164
Chapter 8 Hydrogen Adsorption in Three-dimensional Porous Materials

8.1 Introduction 166
8.2 Computational details 168
8.3 Results and discussion 169

8.3.1 Tuning the metal binding energy and hydrogen storage in alkali metal decorated MOF-5 through boron doping 169
8.3.2 Electronic structure and hydrogen adsorption characteristics of supercubane based three-dimensional porous carbon 179

8.4 Conclusions 187

Chapter 9 First Principles Modelling of New Catalyst for Oxygen Reduction Reaction

9.1 Introduction 189
9.2 Computational details 191
9.3 Results and discussion 191

9.3.1 Transition metal decorated graphyne: An efficient catalyst for oxygen reduction reaction 191
9.3.2 Silicene: a metal-free catalyst for ORR 197

9.4 Conclusions 202

Chapter 10 Outlook and Future Explorations

References 209