<table>
<thead>
<tr>
<th>Figure number</th>
<th>Figure Caption</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Projected world energy consumption, 1990-2035 (quadrillion Btu)</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Projected world energy consumption by fuel, 1990-2035</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>World energy-related carbon dioxide emissions by fuel, 1990-2035</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Working principle of the Photo electrochemical cell</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Comparison of the size of hydrogen tank with different way of storage</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Schematic representation of PEMFC and AFC.</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Optimized geometries of the (a) unit cell and (b) 3 x 3 x 1 super cell of g-CN along with its band structure plot using (c) PBE and (d) HSE06 methods and the band decomposed charge density plot of (e) highest valance and (f) lowest conduction states</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Optimized unit cell and super cell structures of different g-CN nanotubes</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Optimized unit cell, supercell and band dispersion plots of three different CNNRs</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Optimized supercell structures of double layer g-CN with (a) AA stacking and (b) AB stacking along with the band structure of AB double layer from (c) PBE and (d) HSE06 functionals</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Optimized supercell structures of tri-layer g-CN with (a) ABA and (b) ABC stacking along with the band structure of ABC g-CN from (c) PBE and (d) HSE06 methods</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Optimized unit cell geometries of the boron substituted g-CN with boron replacing the (a) nitrogen atom and (b) carbon atom</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Optimized unit cell structures of g-CN doped with (a) Oxygen, (b) Sulphur and (c) Phosphorous and along with their (d) optical spectra and the (e) band structure (HSE06 functional) of phosphorous doped g-CN</td>
<td>57</td>
</tr>
</tbody>
</table>
Figure 2.8 (a) Optimized supercell structure of transition metal decorated g-CN and (b) band structure of Fe decorated g-CN.

Figure 3.1 Interaction of molecular hydrogen with (a) Li\(^{+}\)-doped [C\(_6\)H\(_6\)Li\(^+\)(H\(_2\))\(_n\), n=1–4] and (b) Na\(^{+}\)-doped [C\(_6\)H\(_6\)Na\(^+\)(H\(_2\))\(_n\), n = 1–6] model system

Figure 3.2 Variation of binding energy with increase in the number of hydrogen molecules adsorbed at the cationic site in (a) C\(_6\)H\(_6\)Li\(^+\) and (b) C\(_6\)H\(_6\)Na\(^+\).

Figure 3.3 Interaction of H\(_2\) with the alkali-metal-cation-doped benzene ring and its derivatives.

Figure 3.4 Modeling the hydrogen adsorption in the cation-encapsulated (endohedral) model system

Figure 3.5 Equilibrium geometries of C\(_n\)H\(_n\) (n=4, 5, 6, and 8) molecular systems. b) Interaction of molecular hydrogen with the C\(_n\)H\(_n\) molecular systems. I.E.=interaction energy

Figure 3.6 Charge density plots of the sodium-doped C\(_n\)H\(_n\) molecular complexes. b) ELF plots of the C\(_n\)H\(_n\) molecular system (contour value=0.7). c) ELF plots of the C\(_n\)H\(_n\)-Na molecular system

Figure 3.7 Equilibrium geometries of C\(_4\)H\(_4\)-Na(H\(_2\))\(_m\) (m=0–6)

Figure 3.8 Equilibrium geometries of C\(_5\)H\(_5\)-Na(H\(_2\))\(_m\) (m=0–6).

Figure 3.9 Equilibrium geometries of C\(_8\)H\(_8\)-Na(H\(_2\))\(_m\) (m=0–5).

Figure 3.10 Variation of binding energy with increase in number of hydrogen molecules in a) C\(_4\)H\(_4\)-Na, b) C\(_5\)H\(_5\)-Na, and c) C\(_8\)H\(_8\)-Na complexes

Figure 3.11 Optimized geometry of the (b) model oligomeric structure and (b) its hydrogenated one

Figure 4.1 (a) Optimized geometries of B\(_2\)H\(_4\)\(^2\)- and B\(_2\)H\(_4\)Li\(_2\), (b).HOMO and HOMO-3 orbital pictures of B\(_2\)H\(_4\)Li\(_2\)
Figure 4.2 (a) Optimized geometries of $\text{B}_2\text{H}_2^{2-}$ and $\text{B}_2\text{H}_2\text{Li}_2$ (b). HOMO and HOMO-1 orbital pictures of $\text{B}_2\text{H}_2\text{Li}_2$

Figure 4.3 Optimized geometries of $\text{B}_2\text{H}_2\text{Li}_2(\text{H}_2)_{2n}$ (n=1-4)

Figure 4.4 Optimized geometries of $\text{B}_2\text{H}_2\text{Li}_2(\text{H}_2)_{2n}$ (n=1-4)

Figure 4.5 1 x 1 x 3 supercell structures of optimized one dimensional nanowire with (a) $\text{C}_6\text{H}_6\text{B}_2\text{Li}_2$ as monomer and (b) its hydrogen adsorbed counterpart

Figure 4.6 Equilibrium geometry of $\text{B}_6\text{H}_6^{2-}$

Figure 4.7 Equilibrium geometries for two different isomers of $\text{B}_6\text{H}_2\text{Li}_2$

Figure 4.8 Equilibrium geometries of $\text{B}_6\text{H}_6\text{Li}_2(\text{H}_2)n$ (n=1-3)

Figure 4.9 Variation of (a) HOHO-LUMO gap and (b) charge on lithium atom with number of hydrogen molecules in $\text{B}_6\text{H}_6\text{Li}_2(\text{H}_2)n$ (n=1-3)

Figure 4.10 Three dimensional solid constructed by using B_6Li_2 units as building blocks and $\text{C}≡\text{C}$ as linker.

Figure 4.11 Three dimensional solid constructed by using $\text{B}_6\text{Li}_2(\text{H}_2)3$ units as building blocks and -$\text{C}≡\text{C}$- as linker

Figure 5.1 Optimized structures of closo-alanes, $\text{Al}_n\text{H}_{n+2}$ (n=5, 6, 8, 10 and 12) as obtained by MP2 method. The symmetries are given in parenthesis.

Figure 5.2 Optimized structures of nido-alanes, $\text{Al}_n\text{H}_{n+4}$ (n=5, 6, 8, 10 and 11) as obtained by MP2 method. The symmetries are given in parenthesis

Figure 5.3 Optimized structures of arachno-alanes, $\text{Al}_n\text{H}_{n+6}$ (n= 6, 8 and 10) as obtained by MP2 method. The symmetries are given in parenthesis

Figure 5.4 Optimized structures of tetra-alanes, Al_nH_n (n= 6, 8 and 10) as obtained by MP2 method. The symmetries are given in parenthesis

Figure 6.1 Effect of curvature on the (A) charge and (B) binding energy of a sodium atom interacting with intradeformed concave and convex benzene models

Figure 6.2 Electron Charge density distribution in Na-C_6H_6 with the bending angle: (A)10° (B)35°
Figure 6.3 Molecular hydrogen adsorption in alkali metal atom doped fullerenes (only at the 6m-ring). X refers to the Na and K atoms

Figure 6.4 Schematic presentation of truncation substitutional doping of C₆₀ to generate C₂₄N₂₄

Figure 6.5 Band decomposed charge density iso-surfaces of (a) highest valence band and (b) lowest conduction band of C₂₄N₂₄

Figure 6.6 Optimized geometries of C₂₄N₂₄TM₆ (TM=Sc, Ti and V)

Figure 6.7 Calculated total density of states (Total) and projected density of states on nitrogen (N), carbon (C) and titanium (Ti) atoms of C₂₄N₂₄Ti₆

Figure 6.8 Optimized geometries of C₂₄N₂₄Sc₆(H₂)₆n (n=1-4)

Figure 6.9 Calculated total density of states (Total) and projected density of states on titanium (Ti) and hydrogen (H) atoms of C₂₄N₂₄Ti₆(H₂)₆

Figure 7.1 3x3x1 super cell of the optimized geometries of (a) graphyne (b) graphdiyne and the calculated band structure of (c) graphyne and (d) graphdiyne

Figure 7.2 The optimized 3x3x1 super cell geometries of (a) graphyne-Li (b) graphyne-Li₂ (c) graphdiyne-Li and (d) graphdiyne-Li₂

Figure 7.3 Optimized (a) primitive cell and (b) 3x3x1 super cell structures of graphdiyne-Li₈

Figure 7.4 Optimized primitive cell structures of hydrogenated lithium decorated graphyne

Figure 7.5 Optimized structures of the unit cell and the 2 x 2 x 1 super cell of (i & ii) CMP-1 and (iii & iv) HCMP-1 respectively

Figure 7.6 Band structure plots along with the partial density of states of (a) CMP-1 and (b) HCMP-1 as calculated from the DFT-PBE method

Figure 7.7 Optimized unit cell structures of CMP-1-Li₄ and its hydrogennated species CMP-1-Li₄(H₂)₄n (n=1-3)

Figure 7.8 Optimized unit cell structures of HCMP-1-Li₄ and its hydrogennated species HCMP-1-Li₄(H₂)₄n (n=1-3)
Figure 8.1 Optimized structure of C_4B_2H_6 (b) Optimized structure of C_4B_2H_6^{2-} and (c) Variation of NICS value along the perpendicular direction from the centre of the rings of C_4B_2H_6, C_4B_2H_6^{2-} and C_6H_6

Figure 8.2 Optimized structures of C_4B_2H_6M_2 (M=Li, Na and Mg) and C_4B_2H_6-Mg

Figure 8.3 Optimized structures of C_4B_2H_6Li_2(H_2)_{2n} (n=1-4)

Figure 8.4 Optimized structures of C_4B_2H_6Na_2(H_2)_{2n} (n=1-6)

Figure 8.5 Optimized structures of two isomers of C_4B_2H_6(COOH)_2

Figure 8.6 Optimized primitive cell structure of lithium decorated boron substituted MOF-5 with the formula unit Zn_4O(C_4B_2H_4Li_2(COO)_2)_3

Figure 8.7 Conventional cell structure of lithium decorated boron substituted MOF-5.

Figure 8.8 Conventional cell structure of hydrogen adsorbed lithium decorated modified MOF-5.

Figure 8.9 Optimized unit cell structures of (a) C_{12}, (b) C_{32}, (c) C_{48}, (d) C_{80}, (e) C_{96}, (f) C_{128}, and (g) C_{144}

Figure 8.10 Calculated band structure along with the density of states (DOS) through PBE functional (a) C_{16}, (b) C_{32} and (c) C_{48} respectively

Figure 8.11 Phonon dispersion plot along the high symmetry k-path of the first Brillouin zone of the unit cell (a) C_{16} (b) C_{32}, (c) C_{48}, (d) C_{80}, (e) C_{96} and (f) C_{128}

Figure 8.12 Variation of free energy of different carbon allotropes as a function of temperature

Figure 8.13 Optimized 2 x 2 x 2 super cell structures of hydrogenated C_{32} with four and six molecular hydrogens per unit cell

Figure 8.14 Optimized unit cell structures of C_{144} with (a) 18 and (b) 24 hydrogen molecules per unit cell

Figure 9.1 Optimized geometries of 3 x 3 x 1 super cell structures of (a) GY-Fe (b) GY-Co and (c) GY-Ni

Figure 9.2 Optimized unit cell structures of oxygen adsorbed on (a) GY-Fe (b) GY-Co and (c) GY-Ni
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Optimized unit cell structures of (a) GY-Co-OOH (b) GY-Co-OH$_2$ (c) GY-Co-OH-OH$_2$ and (d) GY-Co-OH$_2$-OH$_2$</td>
<td>194</td>
</tr>
<tr>
<td>9.4</td>
<td>Optimized unit cell structures of (a) GY-Fe-OOH$^-$ and (b) GY-Co-OOH$^-$</td>
<td>196</td>
</tr>
<tr>
<td>9.5</td>
<td>Optimized geometries of the 3x3x1 super cell in (a) top view and (b) side view along with the band dispersion plot of the silicene</td>
<td>197</td>
</tr>
<tr>
<td>9.6</td>
<td>Optimized super cell structures of silicene double layer in AA and AB stacking mode.</td>
<td>198</td>
</tr>
<tr>
<td>9.7</td>
<td>Optimized cell structures of O$_2$ adsorbed on single layer and bilayer silicene</td>
<td>199</td>
</tr>
<tr>
<td>9.8</td>
<td>Possible intermediate in ORR on silicene single layer</td>
<td>200</td>
</tr>
<tr>
<td>9.9</td>
<td>Possible intermediates in ORR on double layer silicene</td>
<td>201</td>
</tr>
</tbody>
</table>