LIST OF FIGURES

1. Fig. 1.1 Scheme for the present thesis work

2. Fig. 2.1 Ti–B binary equilibrium phase diagram

3. Fig. 2.2 a) hexagonal unit cell of single crystal TiB₂ and b) illustration of hexagonal net of boron atoms.

4. Fig. 2.3 a) bright field (BF) TEM image showing wetting behavior of liquid phase in TiB₂–1.5Ni (wt. %), b) SEM image of TiB₂–0.5Fe–0.5Cr (wt. %) and c) BF TEM image along with EDS analysis revealing presence of Fe and Cr in sintering liquid residue at triple pocket of TiB₂–0.5Fe–0.5Cr

5. Fig. 2.4 SEM Images of TiB₂ specimens hot pressed at 2073K (1800°C) for 1h containing a) 0 wt.% sinter additive, b) 2.5 wt.%Si₃N₄ and c) 5 wt.%AlN, d) TEM image of TiB₂–20wt.% MoSi₂, hot pressed at 1973K (1700°C)

6. Fig. 2.5 SEM images revealing fracture surface morphology/fracture characteristics of bulk TiB₂ containing a) 0 wt.% sinter additive, b) 2.5 wt.%Si₃N₄, c) 5 wt.% AlN and d) TiB₂ with metallic additives

7. Fig. 2.6 SEM images revealing nature of oxide scale as well as severity of cracking and oxide scale morphology on oxidized surface of monolithic TiB₂, after oxidation at 1123K for a) 1h and for b) 4h, at 1073K for c) 10h and at 1273K for d) 30h

8. Fig. 2.7 SEM images of severely cracked oxide film on oxidized surfaces of TiB₂+2.5 wt.% Si₃N₄, exposed to air for 10h at a) 1073K and b) 1273K

9. Fig 2.8 Illustration of formation of subsurface oxide scale on fracture surface of TiB₂, oxidized in air at a) 1073K (800°C) for 10h and b) 1273K (1000°C) for 2h

10. Fig. 2.9 Flexural strength of TiB₂ specimens after oxidation in air for 10h at various temperatures A) without and B) with SiO₂ coating layer

11. Fig. 3.1 a) Schematic diagram and b) Photograph of a jaw crusher

12. Fig. 3.2 a) Schematic diagram and b) Photograph of a planetary ball mill

13. Fig. 3.3 a) Photograph of a vibratory cup grinding and b) mill with bowl set
Fig. 3.4a) Schematic and b) actual photograph of a vacuum induction furnace

Fig. 3.5 a) Schematic diagram and b) Photograph of a vacuum hot press

Fig. 3.6 Actual photograph of a) muffle furnace and b) twin zone furnace

Fig. 3.7 Typical diamond wheel cutters (a & b), CNC wire cut EDM machine (c)

Fig. 3.8 a) Schematic diagram and b) Photograph of a sputter coating equipment

Fig. 3.9 a) Schematic diagram and b) Photograph of a laser particle size analyzer

Fig. 3.10 a) Schematic diagram and b) Photograph of a XRD instrument

Fig. 3.11 a) Schematic diagram and b) Photograph of a SEM instrument

Fig. 3.12 a) Schematic diagram and b) actual equipment of EDS system

Fig. 3.13 a) Schematic diagram of TGA system

Fig. 3.14 a) Schematic diagram and b) actual equipment of Vickers hardness tester

Fig. 3.15 a) Schematic diagram and b) actual equipment of 3-point bend tester

Fig. 3.16 a) Schematic diagram and b) actual equipment of dilatometer

Fig. 3.17 a) Schematic diagram and b) actual equipment of four probe resistivity unit

Fig. 3.18 Particle size distribution plots of raw materials

Fig. 4.1 Free energy change of various possible reactions calculated using FactSage software, version 6.3

Fig. 4.2 Thermogravimetric study of TiB$_2$ formation

Fig. 4.3 XRD of products synthesized at different temperatures

Fig. 4.4 Particle size distribution of TiB$_2$ powder

Fig. 4.5 SEM image of titanium diboride powder

Fig. 4.6 Thermograviometry study of formation of CrB$_2$

Fig. 4.7 XRD pattern of chromium boride prepared by stoichiometric charge at 1973 K

Fig. 4.8 Free energy change of reactions (FactSage software version 6.3)

Fig. 4.9 XRD pattern of the products obtained by varying charge composition
*MR: molar ratio (Cr$_2$O$_3$:B$_4$C :C)

38 Fig. 4.10 SEM image of chromium diboride powder

39 Fig. 4.11 Particle size distribution of CrB$_2$ powder

40 Fig. 4.12 Particle size distribution of (Ti$_{0.85}$Cr$_{0.15}$)B$_2$ powder

41 Fig. 4.13 SEM images showing the morphology of MoSi$_2$

42 Fig. 4.14 Particle size distribution of MoSi$_2$ powder

43 Fig. 5.1 Effect of hot pressing temperature on the densification of monolithic TiB$_2$.

44 Fig. 5.2 Effect of TiSi$_2$ additive on the densification of TiB$_2$ by hot pressing at 1823K

45 Fig. 5.3 Quasi binary phase diagram of CrB$_2$-TiB$_2$

46 Fig. 5.4 XRD analysis of TiB$_2$+10%TiSi$_2$ sample

47 Fig. 5.5 BSE image of TiB$_2$+TiSi$_2$ composite.

48 Fig. 5.6a) BSE of a big TiSi$_2$ particle in the matrix. Elemental mapping for b) Ti, c) B and d) Si.

49 Fig. 5.7 Fractography of a) TiB$_2$+2.5%TiSi$_2$ and b)TiB$_2$+10%TiSi$_2$ samples

50 Fig. 5.8 XRD pattern of TiB$_2$+10%CrSi$_2$ powder and composite pellet. TiB$_2$ and CrSi$_2$ peaks only are seen in both.

51 Fig. 5.9 Back Scattered Image of TiB$_2$+10%CrSi$_2$ composite show the presence of three different regions: dark grey matrix, white and black regions.

52 Fig. 5.10 Line scan across the white and black phases of TiB$_2$+10%CrSi$_2$ composite. Black phase rich in Si and white phase rich in Ti and Cr.

53 Fig. 5.11 Elemental mapping of TiB$_2$+10%CrSi$_2$ composite (a) BS image and distribution of (b) Ti, (c) Si and (d) Cr in different phases.

54 Fig. 5.12 Free energy change with temperature for CrSi$_2$ decomposition reactions with the formation of Si

55 Fig. 5.13 Free energy vs. temperature curves for CrB$_2$ and CrSi$_2$ formation

56 Fig. 5.14 SEM images of fractured surface (a) TiB$_2$ +5% CrSi$_2$ and (b) TiB$_2$ +15% CrSi$_2$ composite

57 Fig.5.15 XRD patterns of staring mixtures and densified pellets of
TiB$_2$+WSi$_2$ samples.

Fig. 5.16 a) Back Scattered Electron image of TiB$_2$+10%WSi$_2$ sample, Line scan across the white phase and matrix for different elements Ti (b), Si (c), W (d).

Fig. 5.17 a) Back Scattered Electron (BSE) image of TiB$_2$+10%WSi$_2$ sample, Elemental mapping of different elements Ti (b), Si (c), W (d).

Fig. 5.18 Plot showing the Gibbs free energy change of possible chemical reactions as a function of temperature at 0.001Pa

Fig. 5.19 Fracture surfaces of TiB$_2$ specimens containing a) 2.5 wt.% and b) 5 wt.% of WSi$_2$.

Fig. 5.20 XRD of the starting powder mixture and dense pellet of TiB$_2$+10%CrB$_2$ composite

Fig. 5.21 Fractography of TiB$_2$+10%CrB$_2$ composite. Fracture seen to be a combination of trans and intergranular modes

Fig. 5.22 Phase identification of hot pressed pellet of TiB$_2$ + 20%MoSi$_2$ + 15%CrB$_2$

Fig. 5.23 Fractured surfaces of a) TiB$_2$ + 20 wt.%MoSi$_2$ + 5 wt.%CrB$_2$ and b) TiB$_2$ + 20 wt.%MoSi$_2$ + 15 wt.%CrB$_2$ composites. (Fractured surfaces were obtained under an indentation load of 50 kg)

Fig. 5.24 Phase identification of hot pressed pellet of (Ti$_{0.85}$Cr$_{0.15}$)B$_2$ +20%MoSi$_2$.

Fig. 5.25 Fractured surfaces of a) (Ti$_{0.95}$Cr$_{0.05}$)B$_2$ + 20%MoSi$_2$ and b) (Ti$_{0.90}$Cr$_{0.10}$)B$_2$ + 20%MoSi$_2$ composites.

Fig. 5.26 Back scattered image

Fig. 5.27 Back scattered (BSE) image and elemental mapping of (Ti$_{0.85}$Cr$_{0.15}$)B$_2$+20% MoSi$_2$

Fig. 5.28 Line scans across different phases. of (Ti$_{0.85}$Cr$_{0.15}$)B$_2$+20% MoSi$_2$

Fig. 5.29 Crack deflection and crack branching observed in TiB$_2$+TiSi$_2$ composite a) Overview of Vickers indentation pattern with edge cracks, b&c) crack propagation pattern, d) fractography

Fig. 5.30 Coefficient of thermal expansion with temperature
73 Fig. 5.31 Electrical resistivity of TiB₂ + 2.5 %TiSi₂ composite with temperature

74 Fig. 5.32 Variation of density, hardness and fracture toughness of TiB₂ composite with CrSi₂

75 Fig. 5.33 SEM image of TiB₂ + 2.5% CrSi₂ composite showing a) Crack branching and b) Deflection and bridging

76 Fig. 5.34 Electrical resistivity and coefficient of thermal expansion of TiB₂ + 5% CrSi₂ composite measured in argon atmosphere.

77 Fig. 5.35 Crack propagation patterns of TiB₂+10%WSi₂ composites a & b) crack bridging & deflections

78 Fig. 5.36 CTE vs. temperature plot of TiB₂+15%WSi₂ composite, measured in inert atmosphere.

79 Fig. 5.37 (a) Vickers indentation with crack pattern and (b) crack propagation line of TiB₂+ 2.5%CrB₂ composite

80 Fig. 5.38 Coefficient of thermal expansion and electrical resistivity of TiB₂ + 10% CrB₂ composite in inert atmosphere

81 Fig. 5.39 Vickers indentation (a) with crack propagation pattern (b) of TiB₂ + 20% MoSi₂ + 5% CrB₂ composite

82 Fig. 5.40 Crack propagation pattern in the TiB₂ + 20% MoSi₂ + 10% CrB₂ composite.

83 Fig. 5.41 Hot hardness and flexural strength values of (Tiₐ₀.₈₅Crₐ₀.₁₅)B₂+20% MoSi₂ composite.

84 Fig. 5.42 Crack propagation patterns of a) (Tiₐ₀.₉₅Crₐ₀.₀₅)B₂+20% MoSi₂ (crack deflections) b) (Tiₐ₀.₉₀Crₐ₀.₁₀)B₂+20% MoSi₂ (crack bridging) composites

85 Fig. 5.43 Coefficient of thermal expansion and electrical resistivity data of (Tiₐ₀.₈₅Crₐ₀.₁₅)B₂+20% MoSi₂ composite evaluated in inert atmosphere

86 Fig. 5.44 Effect of various sinter additives on densification of TiB₂

87 Fig. 6.1 TGA plot on continuous oxidation of TiB₂ composites in oxygen.

88 Fig. 6.2 TG-DTA analysis of TiB₂ + CrB₂ composites in oxygen

89 Fig. 6.3 Specific wt. gain vs. temperature plot of TiB₂ composites oxidized in
Fig. 6.4 SEM images of oxidized surfaces of (a) 5, (b) 10 and (c) 15%CrB$_2$ contained TiB$_2$ + 20% MoSi$_2$ composites after oxidation at 1273K (1000°C) in one atmosphere oxygen pressure (TGA sample).

Fig. 6.5 Morphology of the oxidized surface of a & b) (Ti$_{0.95}$Cr$_{0.05}$)B$_2$+20% MoSi$_2$, c & d) (Ti$_{0.90}$Cr$_{0.10}$)B$_2$+20% MoSi$_2$ and e & f) (Ti$_{0.85}$Cr$_{0.15}$)B$_2$+20% MoSi$_2$ composites after continuous oxidation up to 1273K (1000°C), in oxygen (TGA samples)

Fig. 6.6 Specific weight gain of the TiB$_2$+TiSi$_2$ samples during oxidation at 1123K in air

Fig. 6.7 XRD pattern of the oxidized surfaces of TiB$_2$+TiSi$_2$ samples at different time intervals

Fig. 6.8 SEM image of the Oxidized surface of TiB$_2$+2.5%TiSi$_2$ after 64h of oxidation at 1123K

Fig. 6.9 Free energy data for the formation of oxides at 0.21 atm partial pressure of oxygen

Fig. 6.10 Specific wt. gain vs. Time during oxidation of TiB$_2$+CrSi$_2$ composites at 1123K (850°C) in air

Fig. 6.11 Specific weight gain vs. time plot of TiB$_2$+5%CrSi$_2$ composite at 1023, 1073, 1123, 1173 and 1223K (750, 800, 850, 900 and 950°C) in air

Fig. 6.12 Arrhenius plot of log K$_p$ vs 1/T for TiB$_2$+5%CrSi$_2$ composite (Activation energy = 114.9 kJ/mol)

Fig. 6.13 XRD pattern of the oxidized surfaces of TiB$_2$+CrSi$_2$ composites after oxidation at 1123K (850°C) for 64h in air.

Fig. 6.14 XRD pattern of oxidized surfaces of TiB$_2$ composites after oxidation at 1273K (1000°C) for 4 h in air.

Fig. 6.15 Free energy data for the formation of oxides at 0.21 atm partial pressure of oxygen

Fig. 6.16 SEM images of oxidized surface of 5% CrSi$_2$ composite at a) 1023, b) 1123 and c) 1223K after 64 h in air.

Fig. 6.17 SEM images of oxidized surfaces of TiB$_2$ +CrSi$_2$ composites with
(a) 2.5% (b) 5% (c) 10% and (d) 15% CrSi₂ after oxidation at 1123K (850°C) for 64h in air

104 Fig. 6.18 SEM images of oxidized surfaces of TiB₂ + CrSi₂ composites with (a) 2.5% (b) 5% (c) 10% (d) 15% CrSi₂ after oxidation at 1273K (1000°C) for 4h in air.

105 Fig. 6.19 Electrical resistivity vs. temperature of TiB₂+5%CrSi₂ composite in air

106 Fig. 6.20 Specific weight gain vs. time plot of isothermal oxidation at 1123K (850°C) for 64h

107 Fig.6.21 XRD patterns of TiB₂+WSi₂ oxidized samples at 1123K (850°C) in air for 64h

108 Fig. 6.22 Plot showing the Gibbs free energy change of oxidation reactions (6.11-6.25) as a function of temperature for 0.21 atm partial pressure of oxygen

109 Fig. 6.23 Specific weight gain vs. time plot of 80% and 100% TD TiB₂+5%WSi₂ oxidized samples at 1123K (850°C) in air

110 Fig. 6.24 SEM images of surfaces of 80% TD (5% WSi₂) composite oxidized at 1123K (850°C) for 64h at different magnifications.

111 Fig. 6.25 SEM images of surface of 2.5% WSi₂ composite oxidized at 1123K (850°C) for 64h

112 Fig. 6.26. SEM images (a & b) of different magnifications of 5% WSi₂ oxidized sample at 1123K (850°C) for 64h

113 Fig. 6.27. SEM images of oxidized surface of 10% WSi₂ composites (a & b) at 1123K (850°C) for 64h

114 Fig. 6.28. SEM images of oxidized surface of 15% WSi₂ composites (a & b) at 1123K (850°C) for 64h

115 Fig. 6.29 SEM images of surfaces oxidized at 1123K (850°C) for a very long duration of 128h (10% WSi₂)

116 Fig. 6.30 SEM images of surfaces oxidized at 1123K (850°C) for a long duration of 128h (15% WSi₂)

117 Fig.6.31 Weight gain with time of TiB₂+CrB₂ composites during oxidation

xxxiv
at 1123K (850°C)

118 Fig. 6.32 XRD patterns of the surface of TiB$_2$+10%CrB$_2$ composite oxidized at 873, 1073 and 1273K (600, 800 and 1000°C)

119 Fig. 6.33 SEM images of the oxidized surface of TiB$_2$+10%CrB$_2$ at (a) 873, (b) 1073 and (c & d) 1273K

120 Fig. 6.34 XRD patterns of oxidized surface of TiB$_2$+CrB$_2$ composites after 64h at 1123K (850°C)

121 Fig. 6.35 SEM of the oxidized surface of TiB$_2$ composite with (a) 2.5%CrB$_2$, (b) 5%CrB$_2$ and (c) 10%CrB$_2$ after 64h at 1123K (850°C).

122 Fig. 6.36 Free energy data for the formation of oxides at 0.21 atm partial pressure of oxygen

123 Fig. 6.37 Electrical resistivity of TiB$_2$+10%CrB$_2$ measured by 4-probe method in inert atmosphere and air

124 Fig. 6.38 Specific weight gain vs. time plots of TiB$_2$+20%MoSi$_2$ composites of a) 5% b) 10% and c) 15% CrB$_2$ oxidized at different temperatures.

125 Fig. 6.39 XRD patterns of surface of 5, 10 and 15% CrB$_2$ composites oxidized at 1123K

126 Fig. 6.40 XPS analysis of oxidized surface of (a) 5% and (b) 15% CrB$_2$ composite after isothermal oxidation at 1123K (850°C) for 64h in air

127 Fig. 6.41 Free energy formation data of various possible oxidation reactions for 0.21 atm partial pressure of O$_2$

128 Fig. 6.42 SEM images of oxidized surfaces of 5, 10 and 15%CrB$_2$ composites at 1123K (850°C) (a, c & e) and the same composites at 1223K (950°C) (b, d & f) for 64h

129 Fig. 6.43 SEM - EDS analysis of cross section of the composite TiB$_2$ + 20 wt.%MoSi$_2$ +15 wt. %CrB$_2$ oxidized at 1123K (850°C) for 256h

130 Fig. 6.44 Specific weight gain vs. time plots of a) (Ti$_{0.95}$Cr$_{0.05}$)B$_2$+20% MoSi$_2$, b) (Ti$_{0.90}$Cr$_{0.10}$)B$_2$+20% MoSi$_2$ and c) (Ti$_{0.85}$Cr$_{0.15}$)B$_2$+20% MoSi$_2$ composites oxidized at different temperatures

131 Fig. 6.45 XRD patterns of (TiCr)B$_2$+20%MoSi$_2$ composites at a)1023, b) 1123 and c) 1223K
Fig. 6.46 SEM images of a) $(\text{Ti}_{0.95}\text{Cr}_{0.05})\text{B}_2+20\% \text{MoSi}_2$, b) $(\text{Ti}_{0.90}\text{Cr}_{0.10})\text{B}_2+20\% \text{MoSi}_2$, and c) $(\text{Ti}_{0.85}\text{Cr}_{0.15})\text{B}_2+20\% \text{MoSi}_2$ composites oxidized at 1023K (750°C) for 64h.

Fig. 6.47 Morphology of the oxidized surfaces of a & b) $(\text{Ti}_{0.95}\text{Cr}_{0.05})\text{B}_2+20\% \text{MoSi}_2$, c & d) $(\text{Ti}_{0.90}\text{Cr}_{0.10})\text{B}_2+20\% \text{MoSi}_2$, and e & f) $(\text{Ti}_{0.85}\text{Cr}_{0.15})\text{B}_2+20\% \text{MoSi}_2$ composites after isothermal oxidation at 1123K (850°C) for 64h in air.

Fig. 6.48 SEM images of a) $(\text{Ti}_{0.95}\text{Cr}_{0.05})\text{B}_2+20\% \text{MoSi}_2$, b) $(\text{Ti}_{0.90}\text{Cr}_{0.10})\text{B}_2+20\% \text{MoSi}_2$, and c) $(\text{Ti}_{0.85}\text{Cr}_{0.15})\text{B}_2+20\% \text{MoSi}_2$ composites oxidized at 1223K (950°C) for 64h.

Fig. 6.49 Cross section of $(\text{Ti}_{0.85}\text{Cr}_{0.15})\text{B}_2+20\% \text{MoSi}_2$ oxidized surface after 256h at 1123K (850°C)