Plate 1

Sections through gills of *Catla catla* exposed to copper ions

Fig. 1.1 Normal gills x100

(a) Primary gill lamellae

(b) Secondary gill lamellae

Fig. 1.2 CuSO$_4$ (low concentration) - 7 days x 40

(a) Initial degeneration of interlamellar epithelium of primary gill lamellae

(b) Collapsed secondary gill lamellae

Fig. 1.3 CuSO$_4$ (low concentration) - 14 days x 400

(a) Haemorrhage at the tip of secondary gill lamellae

(b) Curling of secondary gill lamellae

Fig. 1.4 CuSO$_4$ (low concentration) - 21 days x 400

(a) Degeneration of interlamellar epithelium

(b) Sloughing and haemorrhage at the tip of secondary gill lamellae

Fig. 1.5 CuSO$_4$ (high concentration) - 7 days x 400

(a) Destruction of cartilaginous core

(b) Decapped secondary gill lamellae at some places

Fig. 1.6 CuSO$_4$ (high concentration) - 14 days x 400

(a) Telangiectasis, blood congestion

(b) Partial fusion of secondary gill lamellae

Fig. 1.7 CuSO$_4$ (high concentration) - 21 days x 400

(a) Epithelial lifting

(b) Hyperplasia

Fig. 1.8 CuSO$_4$ (high concentration) - 21 days x 400

(a) Disorganisation of secondary gill lamellae with swollen cartilaginous core
Plate 2

Sections through gills of *Catla catla* exposed to nickel ions

Fig. 2.1 NiSO₄ (low concentration) - 7 days x 400
 (a) Telangiectasis and partial fusion of two lamella

Fig. 2.2 NiSO₄ (low concentration) - 14 days x 400
 (a) Disrupted cartilagenous core
 (b) Hyperplasia

Fig. 2.3 NiSO₄ (low concentration) - 21 days x 400
 (a) Degenerated secondary gill lamellae
 (b) Aneurysm
 (c) Epithelial lifting

Fig. 2.4 NiSO₄ (low concentration) - 21 days x 1000
 (a) Telangiectasis and infiltration of blood cells

Fig. 2.5 NiSO₄ (high concentration) - 7 days x 1000
 (a) Lamellar disorganisation
 (b) Haemorrhage in central axis

Fig. 2.6 NiSO₄ (high concentration) - 14 days x 400
 (a) Disrupted cartilaginous core
 (b) Thinning of secondary gill lamellae

Fig. 2.7 NiSO₄ (high concentration) - 14 days x 40
 (a) Swollen primary gill lamellae with haemorrhage
 (b) Erosion of secondary gill lamellae

Fig. 2.8 NiSO₄ (high concentration) - 21 days x 100
 (a) Clumping of cartilaginous core
 (b) Total erosion of secondary gill lamellae
Plate 3

Sections through gills of *Catla catla* exposed to mercury ions

Fig. 3.1 HgSO$_4$ (low concentration) - 7 days
(a) Haemorrhage in central axis
(b) Hyperplasia

Fig. 3.2 HgSO$_4$ (low concentration) - 14 days
(a) Disrupted cartilaginous core
(b) Degeneration of interlamellar epithelium
(c) Curling of secondary gill lamellae

Fig. 3.3 HgSO$_4$ (low concentration) - 21 days
(a) Haemorrhage in central axis
(b) Shortening of secondary gill lamellae

Fig. 3.4 HgSO$_4$ (high concentration) - 7 days
(a) Collapsed secondary gill lamellae
(b) Haemorrhage and infiltration of mononuclear cells
(c) Total loss of cartilaginous core

Fig. 3.5 HgSO$_4$ (high concentration) - 14 days
(a) Thinning of secondary gill lamellae
(b) Interlamellar epithelium disorganisation
(c) Vacuolated tip of secondary gill lamellae

Fig. 3.6 HgSO$_4$ (high concentration) - 14 days
(a) Disorganisation of secondary gill lamellae

Fig. 3.7 HgSO$_4$ (high concentration) - 21 days
(a) Ragged appearance of gill

Fig. 3.8 HgSO$_4$ (high concentration) - 21 days
(a) Clumping of cartilaginous core
(b) Erosion of secondary gill lamellae
Plate 4

Sections through Kidney of *Catla catla* exposed to copper ions

Fig. 4.1 Normal kidney x 40

(a) Glomerulus

(b) Tubules

Fig. 4.2 Normal kidney x 100

Fig. 4.3 CuSO$_4$ (low concentration) - 7 days x 400

(a) Shrunken glomerulus

Fig. 4.4 CuSO$_4$ (low concentration) - 14 days x 400

(a) Degeneration of tubular cells

(b) Tubular lumen dilation

Fig. 4.5 CuSO$_4$ (low concentration) - 21 days x 400

(a) Degenerated renal tubules

Fig. 4.6 CuSO$_4$ (high concentration) - 7 days x 400

(a) Vacuolated cytoplasm

(b) Shrunken glomerulus

Fig. 4.7 CuSO$_4$ (high concentration) - 14 days x 400

(a) Loss of cellular integrity

Fig. 4.8 CuSO$_4$ (high concentration) - 21 days x 400

(a) Degenerated glomerulus with infiltration of blood cells
Plate 5

Sections through Kidney of *Catla catla* exposed to nickel ions

Fig. 5.1 NiSO$_4$ (low concentration) - 7 days x 400

(a) Fatty deposition in glomerulus

(b) Haemorrhage in interstitial space

Fig. 5.2 NiSO$_4$ (low concentration) - 14 days x 400

(a) Occlusion of tubular lumen

(b) Desquamation of tubular epithelial lining

Fig. 5.3 NiSO$_4$ (low concentration) - 21 days x400

(a) Severe vacuolation in tubular epithelium

Fig. 5.4 NiSO$_4$ (low concentration) - 21 days x 400

(a) Shrunken glomerulus

(b) Disorganised interstitial space cells

Fig. 5.5 NiSO$_4$ (high concentration) -7 days x 400

(a) Renal tubular lumen dilation

Fig. 5.6 NiSO$_4$ (high concentration) - 14 days x 400

(a) Breakdown of glomerular capillaries

(b) Necrosis of tubular cells

Fig. 5.7 NiSO$_4$ (high concentration) - 21 days x 400

(a) Hyaline appearance of tubules

Fig. 5.8 NiSO$_4$ (high concentration) - 21 days x 400

(a) Damaged glomerulus

(b) Occlusion of tubular lumen
Plate 6

Sections through Kidney of *Catla catla* exposed to mercury ions

Fig. 6.1 HgSO$_4$ (low concentration) - 7 days
(a) Damaged glomerulus
 x 400

Fig. 6.2 HgSO$_4$ (low concentration) - 14 days
(a) Vacuolisation in tubular epithelium
 x 1000

Fig. 6.3 HgSO$_4$ (low concentration) - 21 days
(a) Loss of tubular architecture
 x 400

Fig. 6.4 HgSO$_4$ (high concentration) - 7 days
(a) Occlusion of tubular lumen
(b) Shrunken glomerulus
 x 400

Fig. 6.5 HgSO$_4$ (high concentration) - 14 days
(a) Vacuolisation in glomerular
 x 400

Fig. 6.6 HgSO$_4$ (high concentration) - 21 days
(a) Loss of glomerulus architecture
 x 400

Fig. 6.7 HgSO$_4$ (high concentration) - 21 days
(a) Haemorrhage in glomerulus
 x 400

Fig. 6.8 HgSO$_4$ (high concentration) - 21 days
(a) Total loss of tubular architecture
 x 400
Plate 7

Sections through Liver of *Catla catla* exposed to copper ions

Fig. 7.1 Normal liver x 400

(a) Hepatocytes

(b) Sinusoids

Fig. 7.2 Normal liver x 1000

(a) Hepatocytes

Fig. 7.3 CuSO₄ (low concentration) - 7 days x 400

(a) Cytolysis, swelling of hepatocytes

(b) Piknosis

(c) Increased central canal

Fig. 7.4 CuSO₄ (low concentration) - 14 days x 400

(a) Dilation of sinusoids, fibrosis within sinusoids

(b) Piknotic cells

Fig. 7.5 CuSO₄ (low concentration) - 21 days x 400

(a) Small necrotic sites

(b) Infiltration of blood cells in central canal

Fig. 7.6 CuSO₄ (high concentration) - 7 day x 400

(a) Cellular necrosis (of hepatocytes)

(b) Haemorrhage in central lobular vein

Fig. 7.7 CuSO₄ (high concentration) - 14 days x 400

(a) Parenchymal vacuolisation, focal necrosis

Fig. 7.8 CuSO₄ (high concentration) - 21 days x 400

(a) Dilation of sinusoids
Plate 8

Sections through Liver of *Catla catla* exposed to nickel ions

Fig. 8.1 NiSO$_4$ (low concentration) - 7 days
(a) Degeneration of cell membrane and loss of cytoplasm
(b) Dilation of sinusoids

Fig. 8.2 NiSO$_4$ (low concentration) - 14 days
(a) heterochromatin in nucleus
(b) Fragmented nucleus

Fig. 8.3 NiSO$_4$ (low concentration) - 21 days
(a) Deformated nucleus

Fig. 8.4 NiSO$_4$ (low concentration) - 21 days
(a) Haemorrhage in central lobular vein

Fig. 8.5 NiSO$_4$ (high concentration) - 7 days
(a) Haemorrhage in central lobular vein
(b) Cellular clumping

Fig. 8.6 NiSO$_4$ (high concentration) - 14 days
(a) Vacuolisation
(b) Congestion of hepatocytes

Fig. 8.7 NiSO$_4$ (high concentration) - 21 days
(a) Small necrotic zones
(b) Piknosis

Fig. 8.8 NiSO$_4$ (high concentration) - 21 days
(a) Rosetty shape is disrupted
(b) Piknotic cell
Plate 9

Sections through Liver of *Catla catla* exposed to mercury ions

Fig. 9.1 HgSO$_4$ (low concentration) - 7 days
(a) Infiltration of blood cells in central lobular vein
(b) Degeneration of cell membrane
(c) Dilation of sinusoids

Fig. 9.2 HgSO$_4$ (low concentration) - 14 days
(a) Congestion of hepatocytes
(b) Small necrotic sites

Fig. 9.3 HgSO$_4$ (low concentration) - 21 days
(a) Piknotic cell
(b) Disorganisation of hepatocytes

Fig. 9.4 HgSO$_4$ (low concentration) - 21 days
(a) Haemorrhage in central lobular vein
(b) Steatosis

Fig. 9.5 HgSO$_4$ (high concentration) - 7 days
(a) Infiltration of erythrocytes in vacuolated area

Fig. 9.6 HgSO$_4$ (high concentration) - 14 days
(a) Haemorrhage within sinusoids

Fig. 9.7 HgSO$_4$ (high concentration) - 21 days
(a) Severe steatosis
(b) Piknotic cell

Fig. 9.8 HgSO$_4$ (high concentration) - 21 days
(a) Severe Haemorrhage and cellular clumping in central lobular vein
Plate 10

Sections through Brain of *Catla catla* exposed to copper ions

Fig. 10.1 Normal brain

Fig. 10.2 CuSO$_4$ (low concentration) - 7 days
(a) Migration of mononuclear cells towards meninges

Fig. 10.3 CuSO$_4$ (low concentration) - 14 days
(a) Disjoinment in optic tectum

Fig. 10.4 CuSO$_4$ (low concentration) - 21 days
(a) Disjoinment in *Stratum fibrosum*
(b) Clumping of mononuclear layer of stratum
(c) Fatty deposition in optic tectum

Fig. 10.5 CuSO$_4$ (high concentration) - 7 days
(a) Neuronal degeneration and spongiosis

Fig. 10.6 CuSO$_4$ (high concentration) - 14 days
(a) Vacuolisation around migrated mononuclear cells, focal necrosis

Fig. 10.7 CuSO$_4$ (high concentration) - 21
(a) Vacuolization in optic tectum

Fig. 10.8 CuSO$_4$ (high concentration) - 21
(a) Clumping of migrated mononuclear cells
(b) Pyramidal cells
Plate 11
Sections through Brain of *Catla catla* exposed to nickel ions

Fig. 11.1 NiSO$_4$(low concentration) - 7 days x 100
(a) Mild disjoinment of layers of optic tectum

Fig. 11.2 NiSO$_4$(low concentration) - 14 days x 400
(a) Clumping of mononuclear cells

Fig. 11.3 NiSO$_4$(low concentration) - 21 days x 400
(a) Hyperemia

Fig. 11.4 NiSO$_4$(high concentration) - 7 days x 400
(a) Vacuolisation around enlarged neuroglea like cells
(b) Vacuolisation around Pyramidal cells

Fig. 11.5 NiSO$_4$(high concentration) - 14 days x 400
(a) Vacuolisation around clumped migrated mononuclear cells

Fig. 11.6 NiSO$_4$(high concentration) - 21 days x 400
(a) Separation of *Stratum opticum* and *Stratum fibrosum* layers

Fig. 11.7 NiSO$_4$(high concentration) - 21 days x 400
(a) Spongiosis
(b) Swelling of Pyramidal cells

Fig. 11.8 NiSO$_4$(high concentration) - 21 days x 400
(a) Congestion in mononuclear cell layer
Plate 12

Sections through Brain of *Catla catla* exposed to mercury ions

Fig. 12.1 HgSO$_4$ (low concentration) - 7 days
(a) Spongiosis initiated

Fig. 12.2 HgSO$_4$ (low concentration) - 14 days
(a) Degeneration of mononuclear cell layer

Fig. 12.3 HgSO$_4$ (low concentration) - 21 days
(a) Degeneration of *Stratum fibrosum periventriculare*

Fig. 12.4 HgSO$_4$ (low concentration) - 21 days
(a) Vacuolisation around enlarged neuroglea like cells

Fig. 12.5 HgSO$_4$ (high concentration) - 7 days
(a) Degeneration of layers and spongiosis

Fig. 12.6 HgSO$_4$ (high concentration) - 14 days
(a) Cerebral haemorrhage

Fig. 12.7 HgSO$_4$ (high concentration) - 21 days
(a) Enlarged glial cells
(b) Congestion of mononuclear cells

Fig. 12.8 HgSO$_4$ (high concentration) - 21 days
(a) Disruption of general cellular arrangement
(b) Vacuolised glial cells
Sections through Intestine of *Catla catla* exposed to copper ions

Fig. 13.1 Normal intestine x 100

Fig. 13.2 CuSO₄ (low concentration) - 7 days x 400

 (a) Plateau like villi

 (b) Discontinuation of mucosa layer

Fig. 13.3 CuSO₄ (low concentration) - 14 days x 400

 (a) Disjoinment of layers

 (b) Infiltration of mononuclear cells

Fig. 13.4 CuSO₄ (low concentration) - 21 days x 400

 (a) Hyperplasia in lamina propria

Fig. 13.5 CuSO₄ (high concentration) - 7 days x 400

 (a) Vacuolisation in mucosa

Fig. 13.6 CuSO₄ (high concentration) - 14 days x 400

 (a) Cracked appearance of mucosa

Fig. 13.7 CuSO₄ (high concentration) - 21 days x 1000

 (a) Vacuolisation in villi

 (b) Steatosis

Fig. 13.8 CuSO₄ (high concentration) - 21 days x 1000

 (a) Vacuolisation in muscularis and disjoinment of layers
Plate 14

Sections through Intestine of *Catla catla* exposed to nickel ions

Fig. 14.1 NiSO$_4$ (low concentration)- 7 days x 400
 (a) Loosening of muscularis

Fig. 14.2 NiSO$_4$ (low concentration)- 14 days x 100
 (a) Flattened) tip of villi
 (b) Degeneration of submucosa,

Fig. 14.3 NiSO$_4$ (low concentration)- 21 days x 400
 (a) Plateau like villi

Fig. 14.4 NiSO$_4$ (low concentration)- 21 days x 1000
 (a) Damaged villi

Fig. 14.5 NiSO$_4$ (high concentration)- 7 days x 100
 (a) Broad tip of villi

Fig. 14.6 NiSO$_4$ (high concentration)- 14 days x 100
 (a) Bilobed villi
 (b) Discontinuous serosa

Fig. 14.7 NiSO$_4$ (high concentration)- 21 days x 100
 (a) Sloughing off of layers

Fig. 14.8 NiSO$_4$ (high concentration)- 21 days x 1000
 (a) Severe vacuolisation and haemorrhage in villi
Plate 15

Sections through Intestine of *Catla catla* exposed to mercury ions

Fig. 15.1 HgSO$_4$ (low concentration) - 7 days
(a) Haemorrhage in the lamina propria and aggregations of inflammatory cells
x 400

Fig. 15.2 HgSO$_4$ (low concentration) - 14 days
(a) Flattened tip of villi
(b) Vacuolisation around lamina propria
x 400

Fig. 15.3 HgSO$_4$ (low concentration) - 21 days
(a) Aggregations of inflammatory cells with edema
x 1000

Fig. 15.4 HgSO$_4$ (high concentration) - 7 days
(a) Severe edema of villi
x 400

Fig. 15.5 HgSO$_4$ (high concentration) - 14 days
(a) Partial fusion of villi
(b) Degeneration of lamina propria
x 100

Fig. 15.6 HgSO$_4$ (high concentration) - 21 days
(a) Desquamation and necrosis of villous epithelium
x 100

Fig. 15.7 HgSO$_4$ (high concentration) - 21 days
(a) Hyaline appearance in submucosa
(b) Discontinuous serosa
x 100

Fig. 15.8 HgSO$_4$ (high concentration) - 21 days
(a) Epithelial lifting in serosa
(b) Deshaped villi
x 100
Plate 16

Blood smears of *Catla catla* exposed to copper ions

Fig.16.1 Normal blood smear x 400
(a) Mature RBCs

Fig.16.2 CuSO_4* (low concentration) - 7 days x 400
(a) Micronuclei
(b) Blebbed nucleus in bloated erythrocyte

Fig.16.3 CuSO_4* (low concentration) - 14 days x 400
(a) Homomorphic nucleoli
(b) Vacuolated nucleus
(c) Swollen RBCs

Fig.16.4 CuSO_4* (high concentration) - 7 days x 400
(a) Vacuolated nucleus with micronuclei
(b) Diffused chromatin material
(c) Bilobed nucleus

Fig.16.5 CuSO_4* (high concentration) - 14 days x 400
(a) Tetrahedral RBC
(b) Vacuolated RBC
(c) Beaked RBC

Fig.16.6 CuSO_4* (high concentration) - 21 days x 400
(a) Fragmented nucleus with loss of cellularity
(b) Degenerated chromatin material in swollen cell
Plate 17

Blood smears of *Catla catla* exposed to nickel ions

Fig.17.1 NiSO$_4$ (low concentration) - 7 days x 400
(a) Quadrilateral RBC

Fig.17.2 NiSO$_4$ (low concentration) - 14 days x 400
(a) Cytoplasmic vacuolation
(b) Micronuclei

Fig.17.3 NiSO$_4$ (low concentration) - 21 days x 400
(a) Beaked RBC
(b) Triangular RBC

Fig.17.4 NiSO$_4$ (high concentration) - 7 days x 400
(a) Micronuclei
(b) Blebbing of nucleus

Fig.17.5 NiSO$_4$ (high concentration) - 14 days x 400
(a) Notched nucleus
(b) Fragmented apoptic cell

Fig.17.6 NiSO$_4$ (high concentration) - 21 days x 400
(a) Cytoplasmic vacuolization in swollen cell
Plate 18

Blood smears of *Catla catla* exposed to mercury ions

Fig. 18.1 HgSO$_4$ (low concentration) - 7 days
(a) Beaked RBC
(b) Loss of cellular membrane

Fig. 18.2 HgSO$_4$ (low concentration) - 14 days
(a) Diffused chromatin material
(b) Kidney shaped nucleus

Fig. 18.3 HgSO$_4$ (low concentration) - 21 days
(a) Micronuclei
(b) Cytoplasmic vacuolization in deshaped cell

Fig. 18.4 HgSO$_4$ (high concentration) - 7 days
(a) Loss of cellular membrane
(b) Micronuclei

Fig. 18.5 HgSO$_4$ (high concentration) - 14 days
(a) Triangular RBC
(b) Micronuclei

Fig. 18.6 HgSO$_4$ (high concentration) - 21 days
(a) Fusiform nucleus
(b) Blebbing of nucleus
Sections showing recovery in gills of reacclimatized *Catla catla*

Fig. 19.1 Normal gills
(c) Primary gill lamellae
(d) Secondary gill lamellae

Fig. 19.2 CuSO$_4$ (high concentration) - 21 days
(c) Epithelial lifting
(d) Hyperplasia

Fig. 19.3 Recovery: CuSO$_4$
(a) Epithelial lifting disappeared
(b) Secondary gill lamellae redeveloped
(c) Inter lamellar epithelium restored

Fig. 19.4 NiSO$_4$ (high concentration) - 21 days
(c) Clumping of cartilaginous core
(d) Total erosion of secondary gill lamellae

Fig. 19.5 Recovery: NiSO$_4$
(a) Secondary gill lamellae reappeared

Fig. 19.6 HgSO$_4$ (high concentration) - 21 days
(a) Ragged appearance of gill

Fig. 19.7 Recovery: HgSO$_4$
(a) Appearance of gill is improved
Plate 20

Sections showing recovery in kidney of reacclimatized *Catla catla*

Fig. 20.1 Normal kidney x 40

- (c) Glomerulus

- (d) Tubules

Fig. 20.2 CuSO$_4$ (high concentration) - 21 days x 400

- (b) Degenerated glomerulus with infiltrated blood cells

Fig. 20.3 Recovery: CuSO$_4$ x 400

- (a) Reduced haemolysis

- (b) Reappearance of renal tubules and interstitial tissues

Fig. 20.4 NiSO$_4$ (high concentration) - 21 days x 400

- (c) Damaged glomerulus with infiltrated blood

- (d) Occlusion of tubular lumen

Fig. 20.5 Recovery: NiSO$_4$ x 400

- (a) Glomerulus repaired to some extent

- (b) Shape of tubular epithelium restored

Fig. 20.6 HgSO$_4$ (high concentration) - 21 days x 400

- (b) Total loss of tubular architecture

Fig. 20.7 Recovery: HgSO$_4$ x 400

- (a) Restoration of tubular architecture
Sections showing recovery in liver of reacclimatized *Catla catla*

Fig. 21.1 Normal liver x 400
 (c) Hepatocytes
 (d) Sinusoids

Fig. 21.2 CuSO$_4$ (high concentration) - 21 days x 400
 (b) Dilation of sinusoids

Fig. 21.3 Recovery: CuSO$_4$ x400
 (a) Reduced dilation of sinusoids

Fig. 21.4 NiSO$_4$ (high concentration)-21 days x 400
 (c) Rosetty shape is disrupted
 (d) Pyknotic cell

Fig. 21.5 Recovery: NiSO$_4$ x400
 (a) Hepatocytes gain shape

Fig. 21.6 HgSO$_4$ (high concentration) - 21 days x 400
 (c) Severe steatosis
 (d) Pyknotic cell

Fig. 21.7 Recovery: HgSO$_4$ x400
 (a) Steatosis reduced
Plate 22

Sections showing recovery in brain of reacclimatized *Catla catla*

Fig. 22.1 Normal brain

Fig. 22.2 CuSO$_4$ (high concentration) - 21 days

(c) Clumping of migrated mononuclear cells

(d) Pyramidal cells

Fig. 22.3 Recovery: CuSO$_4$

(a) Clumping of mononuclear cells not seen

(b) Reduced infiltration of mononuclear cells

Fig. 22.4 NiSO$_4$ (high concentration) - 21 days

(c) Spongiosis

(d) Swelling of pyramidal cells

Fig. 22.5 Recovery: NiSO$_4$

(a) Spongiosis not seen

Fig. 22.6 HgSO$_4$ (high concentration) - 21 days

(c) Disruption of general cellular arrangement

(d) Vacuolated glial cells

Fig. 22.7 Recovery: HgSO$_4$

(a) Vacuolated glial cells disappeared
Plate 23

Sections showing recovery in intestine of reacclimatized *Catla catla*

Fig. 23.1 Normal intestine x 100

Fig. 23.2 CuSO$_4$ (high concentration) - 21 days x 400
 (c) Mucosal layer damaged

Fig. 23.3 Recovery: CuSO$_4$ x 400
 (a) Mucosal layer developed

Fig. 23.4 NiSO$_4$ (high concentration) - 21 days x 100
 (b) Damaged villi

Fig. 23.5 Recovery: NiSO$_4$ x 100
 (a) All four layers restored to some extent

Fig. 23.6 HgSO$_4$ (high concentration) - 21 days x 100
 (c) Epithelial lifting in serosa
 (d) Broken tip of villi

Fig. 23.7 Recovery: HgSO$_4$ x 100
 (a) Villi recovered mildly
Plate 24

Blood smears showing recovery in reacclimatized *Catla catla*

Fig.24.1 Normal blood smear x 400
 (b) Mature RBCs

Fig.24.2 CuSO$_4$ (high concentration) - 21 days x 400
 (c) Fragmented nucleus with loss of cellularity
 (d) Degenerated chromatin material in swollen cell

Fig.24.3 Recovery : CuSO$_4$ x 400
 (a) Moderately recovered RBCs

Fig.24.4 NiSO$_4$ (high concentration) - 21 days x 400
 (c) Beaked RBC
 (d) Triangular RBC

Fig.24.5 Recovery: NiSO$_4$ x 400
 (a) Cell shapes recover
 (b) Homomorphic nucleoli
 (c) Vacuolated nucleus

Fig.24.6 HgSO$_4$ (high concentration) - 21 days x 400
 (c) Fusiform nucleus
 (d) Blebbing of nucleus

Fig.24.7 Recovery : HgSO$_4$ x 400
 (a) Vacuolated nucleus
 (b) Micronuclei
 (c) Degenerated chromatin material in swollen cell