CONTENTS

Synopsis xvi
List of Figures xxvii
List of Tables xxxiv

CHAPTER 1. Introduction 1-26

1.1 Activity Transport and Build-up in Nuclear Reactor 2

1.1.1 Nature of the Oxide Formed on Structural Materials 3

1.1.2 Activation of Corrosion Products 4

1.1.3 Activity Deposition on Out of Core Surfaces 6

1.1.3.1 Adsorption 6

1.1.3.2 Ion-exchange Mechanism 7

1.1.3.3 Co-precipitation 7

1.1.3.4 Particle Deposition 7

1.2 Radiation Field Control/Reduction 8

1.2.1 Selection of Material 8

1.2.2 Hot Conditioning of Structural Materials 9

1.2.3 Optimization of Coolant Chemistry 9

1.2.4 Metal Ion Passivation (MIP) 9

1.2.5 Decontamination 10

1.3 Decontamination Methods 10

1.3.1 Chemical Decontamination 11
1.3.1 Hard Chemical Decontamination
- 1.3.1.1 Hard Chemical Decontamination
- 1.3.1.2 Soft Chemical Decontamination

1.3.2 Chemical Decontamination Process

1.3.3 Decontamination Factor

1.3.4 Decontamination of Iron Rich and Nickel-rich Oxides

1.3.5 Decontamination of Chromium Containing Oxide

1.4 Background of this Study; Radioactivity Problem

1.4.1 Antimony Activity Source

1.4.2 Behavior of Antimony Isotopes

1.4.3 Antimony Activity Transportation and Build-up

1.4.4 Peroxide Approach to Eradicate Antimony Problem

1.5 Aim and Scope of the Study

1.5.1 Mechanistic Aspects of Sb Deposition on Carbon Steel and Magnetite surface

1.5.2 Inhibition of Antimony Deposition on Carbon Steel Surface

1.5.3 Antimony(III) Adsorption Minimization on Magnetite Surface

1.6 References

CHAPTER 2. Methods and Materials

2.1 Purpose of the Analytical Investigations

2.2 Experimental Setup for Dissolution and Deposition Studies

2.3 Experiments

2.3.1 Dissolution
2.3.2 Antimony Adsorption on Metal Surfaces

2.3.3 Antimony Adsorption Inhibition on Carbon Steel

2.3.4 Ultrasonic Treatment of Exposed Carbon Steel Coupon

2.3.5 Antimony Adsorption and Its Inhibition on Magnetite Surface

2.4 Instrumental Techniques

2.4.1 Ultraviolet/Visible Spectroscopy

2.4.2 Flame Atomic Absorption Spectrometry

2.4.3 Inductively Coupled Plasma – Atomic Emission Spectroscopy

2.4.4 Powder X-Ray Diffraction

2.4.5 Scanning Electron Microscopy

2.4.6 X-ray Photoelectron Spectroscopy

2.4.7 Fourier Transform-Infrared Spectroscopy

2.4.8 Electrochemical Techniques

2.4.8.1 Tafel Plot
CHAPTER 3. Studies on Antimony Dissolution in Organic Acids and its Deposition on Carbon Steel and Magnetite Surfaces

3.1 Introduction 53

3.2 Dissolution Behavior of Antimony 53

3.3 Stable Speciation of Sb in Chemical Decontamination Solution 57

3.4 Deposition Behavior of Antimony 58

3.4.1 Deposition Behavior of Sb(V) on Carbon Steel Surface 59

3.4.2 Sb(III) Deposition Studies on Carbon Steel Surface 61

3.4.2.1 Deposition Behavior of Sb(III) on Carbon Steel Surface 61

3.4.2.2 Characterization of Deposited Material on Carbon Steel Surface 64

3.4.2.2a XPS Analysis of Sb-Deposited Samples 65

3.4.2.2b Identification of Sb-Fe-O Compound 70

3.4.2.2c XRD Analysis of Sb Adsorbed Carbon Steel Samples 70

3.4.2.3 Mechanism of Sb(III) Deposition on Carbon Steel Surface 72

3.4.3 Sb(III) Deposition on Magnetite Surface 74

3.4.3.1 Sb(III) Adsorption Behavior on Magnetite Powder 74

3.4.3.2 Mechanism of Sb(III) Adsorption on Magnetite Powder 76
3.4.3.3 Desorption Mechanism of Adsorbed Sb(III) on Magnetite Powder in NAC Formulation 78

3.4.3.4 Interaction of Sb(III) with NAC Formulation 81

3.4.3.5 Overall Interaction of Sb(III) with Magnetite Powder in NAC Formulation 81

3.4.3.6 Behavior of Sb(III) Deposition on Magnetite Coated Carbon Steel Surface 82

3.5 Summary 85

3.6 References 86

CHAPTER 4. Inhibition of Antimony Deposition on Carbon Steel Surface 89-132

4.1 Introduction 89

4.2 Corrosion Inhibitors and their Inhibition Efficiency 90

4.3 Sb(III) Inhibition on Carbon Steel Surface with Organic Corrosion Inhibitors 91

4.3.1 Evolution of Pickling Corrosion Inhibitor for Inhibiting Sb(III) Adsorption on Carbon Steel Surface 92

4.3.2 -SH Polar Group Based Pickling Inhibitors 92

4.3.3 -OH and -COOH Polar Group Based Pickling Inhibitor 94

4.3.4 Rodine 92B, a Commercial Corrosion Inhibitor 95

4.3.4.1 Electrochemical Studies 96

4.3.4.2 XPS Analysis to Probe Chemical Interaction of Rodine 92 B with Carbon Steel 98
4.3.4.3 SEM Analysis Rodine 92B Exposed to Carbon Steel Specimen

99

4.3.4.4 Mechanism of Rodine 92B in Sb(III) Adsorption Inhibition on Carbon Steel Surface 100

4.4 Sb(III) Inhibition on Carbon Steel surface with Passivators type Corrosion Inhibitors 101

4.5 Sb(III) Adsorption Inhibition Mechanism on Carbon Steel in Presence of Na₂MoO₄ 103

4.5.1 Behavior of Sb(III) adsorption on Carbon Steel in presence of MoO₄²⁻ in Solution 103

4.5.1.1 Sb(III) Adsorption Studies with Concentration Variation of MoO₄²⁻ 105

4.5.1.2 Sb(III) Adsorption Studies with Concentration Variation of Sb(III) 107

4.5.1.3 Electrochemical Studies 109

4.5.2 Surface Characterization of Deposits Formed on Carbon Steel Surface with MoO₄²⁻ and Sb(III) 111

4.5.2.1 XRD Analysis 112

4.5.2.2 XPS Analysis 113

4.5.2.3 SEM Analysis 117

4.5.3 MoO₄²⁻ and Sb(III) Sorption Mechanism on Carbon Steel 118

4.6 Sb(III) Adsorption Inhibition Mechanism on Carbon Steel in Presence of SeO₃²⁻ 120
4.6.1 Electrochemical Studies 122

4.6.2 Surface Characterization of Deposits Formed on Carbon Steel Surface with SeO_3^{2-} and Sb(III) 122

4.6.2.1 XRD Analysis 123

4.6.2.2 XPS Analysis 123

4.6.2.3 SEM Analysis 127

4.6.3 SeO_3^{2-} and Sb(III) Sorption Mechanism on Carbon Steel 128

4.7 Summary 130

4.8 References 131

--

CHAPTER 5. Minimization of Antimony(III) Adsorption on Magnetite Surface 133-159

5.1 Introduction 133

5.2 Selection of Organic Acid to Minimize Sb(III) Adsorption on Magnetite 133

5.2.1 Effect of Concentration Variation in Tartaric Acid of Sb(III) Adsorption on Magnetite 137

5.2.2 Effect of pH on Sb(III) Adsorption on Magnetite in Tartaric Acid 139

5.2.3 Effect of Other Organic Complexes on Sb(III) Adsorption on Magnetite 139

5.2.4 Effect of Oxyanion on Sb(III) Adsorption on Magnetite 143

5.2.5 Effect of Cations on Sb(III) Adsorption on Magnetite 145

5.2.6 Effect of Rodine 92B on Sb(III) Adsorption on Magnetite 148
5.2.7 Effect of Surface Modification of Fe₃O₄ on Sb(III) Adsorption 150

5.2.8 Overall Performance of Tartaric Acid to Minimize Adsorption of Sb(III) on Fe₃O₄ Powder 152

5.3 Sb(III) Adsorption on Magnetite Coated Carbon Steel Surface 154

5.4 Summary 158

5.5 References 158

CHAPTER 6. Conclusions 160-164

List of Publications 165